|  | import tensorflow as tf | 
					
						
						|  | from tensorflow.keras.layers import Layer, Dense | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sin_activation(x, omega=30): | 
					
						
						|  | return tf.math.sin(omega * x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AdaIN(Layer): | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super(AdaIN, self).__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | def build(self, input_shapes): | 
					
						
						|  | x_shape = input_shapes[0] | 
					
						
						|  | w_shape = input_shapes[1] | 
					
						
						|  |  | 
					
						
						|  | self.w_channels = w_shape[-1] | 
					
						
						|  | self.x_channels = x_shape[-1] | 
					
						
						|  |  | 
					
						
						|  | self.dense_1 = Dense(self.x_channels) | 
					
						
						|  | self.dense_2 = Dense(self.x_channels) | 
					
						
						|  |  | 
					
						
						|  | def call(self, inputs): | 
					
						
						|  | x, w = inputs | 
					
						
						|  | ys = tf.reshape(self.dense_1(w), (-1, 1, 1, self.x_channels)) | 
					
						
						|  | yb = tf.reshape(self.dense_2(w), (-1, 1, 1, self.x_channels)) | 
					
						
						|  | return ys * x + yb | 
					
						
						|  |  | 
					
						
						|  | def get_config(self): | 
					
						
						|  | config = { | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | } | 
					
						
						|  | base_config = super(AdaIN, self).get_config() | 
					
						
						|  | return dict(list(base_config.items()) + list(config.items())) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AdaptiveAttention(Layer): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super(AdaptiveAttention, self).__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | def call(self, inputs): | 
					
						
						|  | m, a, i = inputs | 
					
						
						|  | return (1 - m) * a + m * i | 
					
						
						|  |  | 
					
						
						|  | def get_config(self): | 
					
						
						|  | base_config = super(AdaptiveAttention, self).get_config() | 
					
						
						|  | return base_config | 
					
						
						|  |  |