Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,21 +6,23 @@ import numpy as np
|
|
6 |
# Klassennamen, sollten Ihrem Dataset entsprechen
|
7 |
class_names = ['Apple__black_rot', 'Apple__healthy', 'Apple__rust', 'Apple__scab']
|
8 |
|
9 |
-
def predict_figure(
|
10 |
-
if
|
11 |
-
return "
|
12 |
|
13 |
model = tf.keras.models.load_model('apple_classification-2.keras')
|
14 |
-
img = Image.fromarray(image).convert('RGB')
|
15 |
-
img = img.resize((150, 150))
|
16 |
-
img_array = np.array(img)
|
17 |
-
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def generate_response(predicted_class):
|
26 |
responses = {
|
@@ -39,12 +41,13 @@ examples = [
|
|
39 |
["images/Apple__scab.JPG"]
|
40 |
]
|
41 |
|
|
|
42 |
iface = gr.Interface(
|
43 |
fn=predict_figure,
|
44 |
-
inputs=gr.
|
45 |
-
outputs=["image", "
|
46 |
title="Klassifikator für Apfelblattkrankheiten",
|
47 |
-
description="
|
48 |
examples=examples
|
49 |
)
|
50 |
-
iface.launch()
|
|
|
6 |
# Klassennamen, sollten Ihrem Dataset entsprechen
|
7 |
class_names = ['Apple__black_rot', 'Apple__healthy', 'Apple__rust', 'Apple__scab']
|
8 |
|
9 |
+
def predict_figure(uploaded_file):
|
10 |
+
if uploaded_file is None:
|
11 |
+
return "Keine Datei hochgeladen.", None, "Keine Vorhersage"
|
12 |
|
13 |
model = tf.keras.models.load_model('apple_classification-2.keras')
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
with Image.open(uploaded_file).convert('RGB') as img:
|
16 |
+
img = img.resize((150, 150))
|
17 |
+
img_array = np.array(img)
|
18 |
+
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
19 |
|
20 |
+
# Identify the most confident prediction
|
21 |
+
confidences = {class_names[i]: np.round(float(prediction[0][i]), 2) for i in range(len(class_names))}
|
22 |
+
max_confidence_class = max(confidences, key=confidences.get)
|
23 |
+
response = generate_response(max_confidence_class)
|
24 |
+
|
25 |
+
return img, confidences, response
|
26 |
|
27 |
def generate_response(predicted_class):
|
28 |
responses = {
|
|
|
41 |
["images/Apple__scab.JPG"]
|
42 |
]
|
43 |
|
44 |
+
# Define the Gradio interface
|
45 |
iface = gr.Interface(
|
46 |
fn=predict_figure,
|
47 |
+
inputs=gr.File(label="Datei hochladen"),
|
48 |
+
outputs=["image", "text", "text"],
|
49 |
title="Klassifikator für Apfelblattkrankheiten",
|
50 |
+
description="Lade ein Bild eines Apfelblatts hoch, um den Gesundheitszustand und die Vertrauenswürdigkeit des Modells zu sehen.",
|
51 |
examples=examples
|
52 |
)
|
53 |
+
iface.launch()
|