anderni2 commited on
Commit
a9ac2b2
·
verified ·
1 Parent(s): 61b562c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  import tensorflow as tf
3
-
4
 
5
  # Lade dein benutzerdefiniertes Regressionsmodell
6
  model = tf.keras.models.load_model('Task_Pokemon.keras')
@@ -9,16 +9,17 @@ model = tf.keras.models.load_model('Task_Pokemon.keras')
9
  class_names = ['Aerodactyl', 'Charizard', 'Victreebel']
10
 
11
  def classify_image(image):
12
- img = image.resize((160, 160)) # Hier definieren wir die Größe der Bilder
13
- img_array = tf.keras.preprocessing.image.img_to_array(img)
 
14
  img_array = tf.expand_dims(img_array, 0) # Erstelle einen Batch
15
  predictions = model.predict(img_array)
16
  predicted_class = class_names[np.argmax(predictions[0])]
17
  confidence = np.max(predictions[0])
18
  return predicted_class, confidence
19
 
20
- image_input = gr.Image()
21
- label = gr.Label(num_top_classes=3)
22
 
23
  iface = gr.Interface(
24
  fn=classify_image,
 
1
  import gradio as gr
2
  import tensorflow as tf
3
+ import numpy as np
4
 
5
  # Lade dein benutzerdefiniertes Regressionsmodell
6
  model = tf.keras.models.load_model('Task_Pokemon.keras')
 
9
  class_names = ['Aerodactyl', 'Charizard', 'Victreebel']
10
 
11
  def classify_image(image):
12
+ # Konvertiere das Bild in ein PIL-Bildobjekt
13
+ img_pil = image.resize((160, 160)) # Hier definieren wir die Größe der Bilder
14
+ img_array = tf.keras.preprocessing.image.img_to_array(img_pil)
15
  img_array = tf.expand_dims(img_array, 0) # Erstelle einen Batch
16
  predictions = model.predict(img_array)
17
  predicted_class = class_names[np.argmax(predictions[0])]
18
  confidence = np.max(predictions[0])
19
  return predicted_class, confidence
20
 
21
+ image_input = gr.inputs.Image()
22
+ label = gr.outputs.Label(num_top_classes=3)
23
 
24
  iface = gr.Interface(
25
  fn=classify_image,