Spaces:
Running
on
Zero
Running
on
Zero
choose fa2 if GPU available
Browse files
app.py
CHANGED
@@ -27,16 +27,15 @@ MAX_MAX_NEW_TOKENS = 2048
|
|
27 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
28 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
29 |
|
30 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
31 |
-
|
32 |
model_id = "google/gemma-3-270m-it"
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
|
|
|
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
model_id,
|
36 |
device_map="auto",
|
37 |
torch_dtype=torch.bfloat16,
|
38 |
-
attn_implementation=
|
39 |
-
trust_remote_code=True,
|
40 |
)
|
41 |
model.config.sliding_window = 4096
|
42 |
model.eval()
|
|
|
27 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
28 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
29 |
|
|
|
|
|
30 |
model_id = "google/gemma-3-270m-it"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
32 |
+
|
33 |
+
attn_impl = "flash_attention_2" if torch.cuda.is_available() else "eager"
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
model_id,
|
36 |
device_map="auto",
|
37 |
torch_dtype=torch.bfloat16,
|
38 |
+
attn_implementation=attn_impl,
|
|
|
39 |
)
|
40 |
model.config.sliding_window = 4096
|
41 |
model.eval()
|