Spaces:
Running
Running
Create app.py
Browse filesNew sentiment analysis
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
3 |
+
|
4 |
+
# Load model
|
5 |
+
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
8 |
+
sentiment_model = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
9 |
+
|
10 |
+
# Function for Gradio
|
11 |
+
def analyze_sentiment(text):
|
12 |
+
result = sentiment_model(text)[0]
|
13 |
+
return {
|
14 |
+
"Sentiment": result["label"],
|
15 |
+
"Confidence": f"{result['score']:.2f}"
|
16 |
+
}
|
17 |
+
|
18 |
+
# Example texts
|
19 |
+
examples = [
|
20 |
+
["I absolutely love this new phone, the camera is stunning!"],
|
21 |
+
["I hate the way this app keeps crashing."],
|
22 |
+
["It’s fine, nothing special but not terrible either."],
|
23 |
+
]
|
24 |
+
|
25 |
+
# Gradio UI
|
26 |
+
demo = gr.Interface(
|
27 |
+
fn=analyze_sentiment,
|
28 |
+
inputs=gr.Textbox(lines=3, placeholder="Type a sentence here..."),
|
29 |
+
outputs="label",
|
30 |
+
examples=examples,
|
31 |
+
title="Tweet Sentiment Analyzer",
|
32 |
+
description=""
|
33 |
+
)
|
34 |
+
|
35 |
+
if _name_ == "_main_":
|
36 |
+
demo.launch()
|