Sentiment_demo / app.py
anabury's picture
Update app.py
1b18d31 verified
raw
history blame
1.13 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# Load model
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
sentiment_model = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# Function for Gradio
def analyze_sentiment(text):
result = sentiment_model(text)[0]
return f"Sentiment: {result['label']} | Confidence: {result['score']:.2f}"
# Example texts
examples = [
["I absolutely love this new phone, the camera is stunning!"],
["I hate the way this app keeps crashing."],
["It’s fine, nothing special but not terrible either."],
]
# Gradio UI
demo = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(lines=3, placeholder="Type a sentence here..."),
outputs="text",
examples=examples,
title="Tweet Sentiment Analyzer",
description="A simple Hugging Face Space to analyze sentiment in tweets using CardiffNLP's RoBERTa model."
)
if __name__ == "__main__":
demo.launch()