Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -3,32 +3,61 @@ import tensorflow as tf 
     | 
|
| 3 | 
         
             
            import numpy as np
         
     | 
| 4 | 
         
             
            from PIL import Image
         
     | 
| 5 | 
         | 
| 6 | 
         
            -
            # ---------------- LOAD  
     | 
| 7 | 
         
            -
            model = tf.keras.models.load_model("chest_xray_model.h5")
         
     | 
| 8 | 
         
             
            class_labels = ["Normal", "Pneumonia"]
         
     | 
| 9 | 
         | 
| 10 | 
         
             
            # ---------------- PREDICTION FUNCTION ---------------- #
         
     | 
| 11 | 
         
            -
            def  
     | 
| 12 | 
         
            -
                 
     | 
| 13 | 
         
            -
                 
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 22 | 
         | 
| 23 | 
         
             
            # ---------------- GRADIO INTERFACE ---------------- #
         
     | 
| 24 | 
         
             
            interface = gr.Interface(
         
     | 
| 25 | 
         
            -
                fn= 
     | 
| 26 | 
         
            -
                inputs=gr. 
     | 
| 27 | 
         
            -
                outputs= 
     | 
| 28 | 
         
             
                title="Chest X-Ray Pneumonia Classifier",
         
     | 
| 29 | 
         
            -
                description="Upload  
     | 
| 30 | 
         
             
            )
         
     | 
| 31 | 
         | 
| 
         | 
|
| 32 | 
         
             
            if __name__ == "__main__":
         
     | 
| 33 | 
         
             
                interface.launch()
         
     | 
| 34 | 
         | 
| 
         | 
|
| 3 | 
         
             
            import numpy as np
         
     | 
| 4 | 
         
             
            from PIL import Image
         
     | 
| 5 | 
         | 
| 6 | 
         
            +
            # ---------------- LOAD TRAINED MODEL ---------------- #
         
     | 
| 7 | 
         
            +
            model = tf.keras.models.load_model("chest_xray_model.h5")  # Make sure this file is uploaded
         
     | 
| 8 | 
         
             
            class_labels = ["Normal", "Pneumonia"]
         
     | 
| 9 | 
         | 
| 10 | 
         
             
            # ---------------- PREDICTION FUNCTION ---------------- #
         
     | 
| 11 | 
         
            +
            def predict_xray(img):
         
     | 
| 12 | 
         
            +
                # Preprocess
         
     | 
| 13 | 
         
            +
                img = img.resize((224, 224))
         
     | 
| 14 | 
         
            +
                img_array = np.array(img) / 255.0
         
     | 
| 15 | 
         
            +
                img_array = np.expand_dims(img_array, axis=0)
         
     | 
| 16 | 
         
            +
                
         
     | 
| 17 | 
         
            +
                # Model prediction
         
     | 
| 18 | 
         
            +
                prediction = model.predict(img_array, verbose=0)[0][0]
         
     | 
| 19 | 
         
            +
                label = class_labels[int(prediction > 0.5)]
         
     | 
| 20 | 
         
            +
                confidence = prediction if prediction > 0.5 else 1 - prediction
         
     | 
| 21 | 
         
            +
                
         
     | 
| 22 | 
         
            +
                # Detailed preliminary radiology report and first aid
         
     | 
| 23 | 
         
            +
                if label == "Pneumonia":
         
     | 
| 24 | 
         
            +
                    report = (
         
     | 
| 25 | 
         
            +
                        "Preliminary Radiology Report:\n"
         
     | 
| 26 | 
         
            +
                        "- The chest X-ray shows opacities or infiltrates consistent with pneumonia.\n"
         
     | 
| 27 | 
         
            +
                        "- Findings suggest possible lung inflammation or infection.\n"
         
     | 
| 28 | 
         
            +
                        "- Further diagnostic tests (blood tests, sputum culture, oxygen saturation) recommended.\n\n"
         
     | 
| 29 | 
         
            +
                        "First Aid / Immediate Actions:\n"
         
     | 
| 30 | 
         
            +
                        "1. Seek medical attention immediately for confirmation and treatment.\n"
         
     | 
| 31 | 
         
            +
                        "2. Monitor for severe symptoms: high fever, shortness of breath, chest pain, confusion.\n"
         
     | 
| 32 | 
         
            +
                        "3. Ensure hydration and rest.\n"
         
     | 
| 33 | 
         
            +
                        "4. Avoid self-medicating with antibiotics without doctor supervision.\n"
         
     | 
| 34 | 
         
            +
                        "5. Use a mask and maintain good hygiene to prevent spread if contagious.\n"
         
     | 
| 35 | 
         
            +
                        "6. Keep a pulse oximeter if available; seek emergency care if oxygen saturation < 94%.\n"
         
     | 
| 36 | 
         
            +
                        "7. Note any worsening symptoms and report them to healthcare providers promptly.\n"
         
     | 
| 37 | 
         
            +
                    )
         
     | 
| 38 | 
         
            +
                else:
         
     | 
| 39 | 
         
            +
                    report = (
         
     | 
| 40 | 
         
            +
                        "Preliminary Radiology Report:\n"
         
     | 
| 41 | 
         
            +
                        "- No visible signs of pneumonia detected on this X-ray.\n"
         
     | 
| 42 | 
         
            +
                        "- Lungs appear clear, but clinical correlation is advised.\n\n"
         
     | 
| 43 | 
         
            +
                        "General Advice:\n"
         
     | 
| 44 | 
         
            +
                        "1. Maintain healthy habits: good hydration, nutrition, and regular exercise.\n"
         
     | 
| 45 | 
         
            +
                        "2. Seek medical attention if respiratory symptoms develop.\n"
         
     | 
| 46 | 
         
            +
                        "3. Continue monitoring for cough, fever, or shortness of breath.\n"
         
     | 
| 47 | 
         
            +
                    )
         
     | 
| 48 | 
         
            +
                
         
     | 
| 49 | 
         
            +
                return f"Prediction: {label} ({confidence*100:.2f}% confidence)\n\n{report}"
         
     | 
| 50 | 
         | 
| 51 | 
         
             
            # ---------------- GRADIO INTERFACE ---------------- #
         
     | 
| 52 | 
         
             
            interface = gr.Interface(
         
     | 
| 53 | 
         
            +
                fn=predict_xray,
         
     | 
| 54 | 
         
            +
                inputs=gr.Image(type="pil"),
         
     | 
| 55 | 
         
            +
                outputs="text",
         
     | 
| 56 | 
         
             
                title="Chest X-Ray Pneumonia Classifier",
         
     | 
| 57 | 
         
            +
                description="Upload a chest X-ray to get a detailed preliminary report and first-aid recommendations."
         
     | 
| 58 | 
         
             
            )
         
     | 
| 59 | 
         | 
| 60 | 
         
            +
            # Launch the app
         
     | 
| 61 | 
         
             
            if __name__ == "__main__":
         
     | 
| 62 | 
         
             
                interface.launch()
         
     | 
| 63 | 
         |