Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import humanfriendly | |
| import numpy as np | |
| import torch | |
| def get_human_readable_count(number: int) -> str: | |
| """Return human_readable_count | |
| Originated from: | |
| https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/core/memory.py | |
| Abbreviates an integer number with K, M, B, T for thousands, millions, | |
| billions and trillions, respectively. | |
| Examples: | |
| >>> get_human_readable_count(123) | |
| '123 ' | |
| >>> get_human_readable_count(1234) # (one thousand) | |
| '1 K' | |
| >>> get_human_readable_count(2e6) # (two million) | |
| '2 M' | |
| >>> get_human_readable_count(3e9) # (three billion) | |
| '3 B' | |
| >>> get_human_readable_count(4e12) # (four trillion) | |
| '4 T' | |
| >>> get_human_readable_count(5e15) # (more than trillion) | |
| '5,000 T' | |
| Args: | |
| number: a positive integer number | |
| Return: | |
| A string formatted according to the pattern described above. | |
| """ | |
| assert number >= 0 | |
| labels = [" ", "K", "M", "B", "T"] | |
| num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1) | |
| num_groups = int(np.ceil(num_digits / 3)) | |
| num_groups = min(num_groups, len(labels)) | |
| shift = -3 * (num_groups - 1) | |
| number = number * (10**shift) | |
| index = num_groups - 1 | |
| return f"{number:.2f} {labels[index]}" | |
| def to_bytes(dtype) -> int: | |
| return int(str(dtype)[-2:]) // 8 | |
| def model_summary(model: torch.nn.Module) -> str: | |
| message = "Model structure:\n" | |
| message += str(model) | |
| tot_params = sum(p.numel() for p in model.parameters()) | |
| num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
| percent_trainable = "{:.1f}".format(num_params * 100.0 / tot_params) | |
| tot_params = get_human_readable_count(tot_params) | |
| num_params = get_human_readable_count(num_params) | |
| message += "\n\nModel summary:\n" | |
| message += f" Class Name: {model.__class__.__name__}\n" | |
| message += f" Total Number of model parameters: {tot_params}\n" | |
| message += ( | |
| f" Number of trainable parameters: {num_params} ({percent_trainable}%)\n" | |
| ) | |
| num_bytes = humanfriendly.format_size( | |
| sum( | |
| p.numel() * to_bytes(p.dtype) for p in model.parameters() if p.requires_grad | |
| ) | |
| ) | |
| message += f" Size: {num_bytes}\n" | |
| dtype = next(iter(model.parameters())).dtype | |
| message += f" Type: {dtype}" | |
| return message | |