Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| from torch.optim import Optimizer | |
| from typing import List, Optional, Tuple, Union | |
| def calc_lr(step, dim_embed, warmup_steps): | |
| return dim_embed ** (-0.5) * min(step ** (-0.5), step * warmup_steps ** (-1.5)) | |
| # The function is modified from | |
| # https://github.com/lifeiteng/vall-e/blob/9c69096d603ce13174fb5cb025f185e2e9b36ac7/valle/modules/scheduler.py | |
| class NoamScheduler(torch.optim.lr_scheduler._LRScheduler): | |
| def __init__( | |
| self, | |
| base_lr: float, | |
| optimizer: torch.optim.Optimizer, | |
| dim_embed: int, | |
| warmup_steps: int, | |
| last_epoch: int = -1, | |
| verbose: bool = False, | |
| ) -> None: | |
| self.dim_embed = dim_embed | |
| self.base_lr = base_lr | |
| self.warmup_steps = warmup_steps | |
| self.num_param_groups = len(optimizer.param_groups) | |
| super().__init__(optimizer, last_epoch, verbose) | |
| def get_lr(self) -> float: | |
| lr = self.base_lr * calc_lr(self._step_count, self.dim_embed, self.warmup_steps) | |
| return [lr] * self.num_param_groups | |
| def set_step(self, step: int): | |
| self._step_count = step | |
| class LRScheduler(object): | |
| """ | |
| Base-class for learning rate schedulers where the learning-rate depends on both the | |
| batch and the epoch. | |
| """ | |
| def __init__(self, optimizer: Optimizer, verbose: bool = False): | |
| # Attach optimizer | |
| if not isinstance(optimizer, Optimizer): | |
| raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__)) | |
| self.optimizer = optimizer | |
| self.verbose = verbose | |
| for group in optimizer.param_groups: | |
| group.setdefault("base_lr", group["lr"]) | |
| self.base_lrs = [group["base_lr"] for group in optimizer.param_groups] | |
| self.epoch = 0 | |
| self.batch = 0 | |
| def state_dict(self): | |
| """Returns the state of the scheduler as a :class:`dict`. | |
| It contains an entry for every variable in self.__dict__ which | |
| is not the optimizer. | |
| """ | |
| return { | |
| "base_lrs": self.base_lrs, | |
| "epoch": self.epoch, | |
| "batch": self.batch, | |
| } | |
| def load_state_dict(self, state_dict): | |
| """Loads the schedulers state. | |
| Args: | |
| state_dict (dict): scheduler state. Should be an object returned | |
| from a call to :meth:`state_dict`. | |
| """ | |
| self.__dict__.update(state_dict) | |
| def get_last_lr(self) -> List[float]: | |
| """Return last computed learning rate by current scheduler. Will be a list of float.""" | |
| return self._last_lr | |
| def get_lr(self): | |
| # Compute list of learning rates from self.epoch and self.batch and | |
| # self.base_lrs; this must be overloaded by the user. | |
| # e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] | |
| raise NotImplementedError | |
| def step_batch(self, batch: Optional[int] = None) -> None: | |
| # Step the batch index, or just set it. If `batch` is specified, it | |
| # must be the batch index from the start of training, i.e. summed over | |
| # all epochs. | |
| # You can call this in any order; if you don't provide 'batch', it should | |
| # of course be called once per batch. | |
| if batch is not None: | |
| self.batch = batch | |
| else: | |
| self.batch = self.batch + 1 | |
| self._set_lrs() | |
| def step_epoch(self, epoch: Optional[int] = None): | |
| # Step the epoch index, or just set it. If you provide the 'epoch' arg, | |
| # you should call this at the start of the epoch; if you don't provide the 'epoch' | |
| # arg, you should call it at the end of the epoch. | |
| if epoch is not None: | |
| self.epoch = epoch | |
| else: | |
| self.epoch = self.epoch + 1 | |
| self._set_lrs() | |
| def _set_lrs(self): | |
| values = self.get_lr() | |
| assert len(values) == len(self.optimizer.param_groups) | |
| for i, data in enumerate(zip(self.optimizer.param_groups, values)): | |
| param_group, lr = data | |
| param_group["lr"] = lr | |
| self._last_lr = [group["lr"] for group in self.optimizer.param_groups] | |
| class Eden(LRScheduler): | |
| """ | |
| Eden scheduler. | |
| The basic formula (before warmup) is: | |
| lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * | |
| (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup | |
| where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches | |
| and then stays constant at 1. | |
| E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam | |
| Args: | |
| optimizer: the optimizer to change the learning rates on | |
| lr_batches: the number of batches after which we start significantly | |
| decreasing the learning rate, suggest 5000. | |
| lr_epochs: the number of epochs after which we start significantly | |
| decreasing the learning rate, suggest 6 if you plan to do e.g. | |
| 20 to 40 epochs, but may need smaller number if dataset is huge | |
| and you will do few epochs. | |
| """ | |
| def __init__( | |
| self, | |
| optimizer: Optimizer, | |
| lr_batches: Union[int, float], | |
| lr_epochs: Union[int, float], | |
| warmup_batches: Union[int, float] = 500.0, | |
| verbose: bool = False, | |
| ): | |
| super(Eden, self).__init__(optimizer, verbose) | |
| self.lr_batches = lr_batches | |
| self.lr_epochs = lr_epochs | |
| self.warmup_batches = warmup_batches | |
| def get_lr(self): | |
| factor = ( | |
| (self.batch**2 + self.lr_batches**2) / self.lr_batches**2 | |
| ) ** -0.25 * ( | |
| ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25 | |
| ) | |
| warmup_factor = ( | |
| 1.0 | |
| if self.batch >= self.warmup_batches | |
| else 0.5 + 0.5 * (self.batch / self.warmup_batches) | |
| ) | |
| return [x * factor * warmup_factor for x in self.base_lrs] | |