Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import argparse | |
| import torch | |
| from models.vocoders.gan.gan_vocoder_trainer import GANVocoderTrainer | |
| from utils.util import load_config | |
| def build_trainer(args, cfg): | |
| supported_trainer = { | |
| "GANVocoder": GANVocoderTrainer, | |
| } | |
| trainer_class = supported_trainer[cfg.model_type] | |
| trainer = trainer_class(args, cfg) | |
| return trainer | |
| def cuda_relevant(deterministic=False): | |
| torch.cuda.empty_cache() | |
| # TF32 on Ampere and above | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.enabled = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| # Deterministic | |
| torch.backends.cudnn.deterministic = deterministic | |
| torch.backends.cudnn.benchmark = not deterministic | |
| torch.use_deterministic_algorithms(deterministic) | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--config", | |
| default="config.json", | |
| help="json files for configurations.", | |
| required=True, | |
| ) | |
| parser.add_argument( | |
| "--exp_name", | |
| type=str, | |
| default="exp_name", | |
| help="A specific name to note the experiment", | |
| required=True, | |
| ) | |
| parser.add_argument( | |
| "--resume_type", | |
| type=str, | |
| help="resume for continue to train, finetune for finetuning", | |
| ) | |
| parser.add_argument( | |
| "--checkpoint", | |
| type=str, | |
| help="checkpoint to resume", | |
| ) | |
| parser.add_argument( | |
| "--log_level", default="warning", help="logging level (debug, info, warning)" | |
| ) | |
| args = parser.parse_args() | |
| cfg = load_config(args.config) | |
| # Data Augmentation | |
| if cfg.preprocess.data_augment: | |
| new_datasets_list = [] | |
| for dataset in cfg.preprocess.data_augment: | |
| new_datasets = [ | |
| # f"{dataset}_pitch_shift", | |
| # f"{dataset}_formant_shift", | |
| f"{dataset}_equalizer", | |
| f"{dataset}_time_stretch", | |
| ] | |
| new_datasets_list.extend(new_datasets) | |
| cfg.dataset.extend(new_datasets_list) | |
| # CUDA settings | |
| cuda_relevant() | |
| # Build trainer | |
| trainer = build_trainer(args, cfg) | |
| trainer.train_loop() | |
| if __name__ == "__main__": | |
| main() | |