Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import os | |
| import numpy as np | |
| import json | |
| import argparse | |
| from glob import glob | |
| from tqdm import tqdm | |
| from collections import defaultdict | |
| from evaluation.metrics.energy.energy_rmse import extract_energy_rmse | |
| from evaluation.metrics.energy.energy_pearson_coefficients import ( | |
| extract_energy_pearson_coeffcients, | |
| ) | |
| from evaluation.metrics.f0.f0_pearson_coefficients import extract_fpc | |
| from evaluation.metrics.f0.f0_periodicity_rmse import extract_f0_periodicity_rmse | |
| from evaluation.metrics.f0.f0_rmse import extract_f0rmse | |
| from evaluation.metrics.f0.v_uv_f1 import extract_f1_v_uv | |
| from evaluation.metrics.intelligibility.character_error_rate import extract_cer | |
| from evaluation.metrics.intelligibility.word_error_rate import extract_wer | |
| from evaluation.metrics.similarity.speaker_similarity import extract_speaker_similarity | |
| from evaluation.metrics.spectrogram.frechet_distance import extract_fad | |
| from evaluation.metrics.spectrogram.mel_cepstral_distortion import extract_mcd | |
| from evaluation.metrics.spectrogram.multi_resolution_stft_distance import extract_mstft | |
| from evaluation.metrics.spectrogram.pesq import extract_pesq | |
| from evaluation.metrics.spectrogram.scale_invariant_signal_to_distortion_ratio import ( | |
| extract_si_sdr, | |
| ) | |
| from evaluation.metrics.spectrogram.scale_invariant_signal_to_noise_ratio import ( | |
| extract_si_snr, | |
| ) | |
| from evaluation.metrics.spectrogram.short_time_objective_intelligibility import ( | |
| extract_stoi, | |
| ) | |
| METRIC_FUNC = { | |
| "energy_rmse": extract_energy_rmse, | |
| "energy_pc": extract_energy_pearson_coeffcients, | |
| "fpc": extract_fpc, | |
| "f0_periodicity_rmse": extract_f0_periodicity_rmse, | |
| "f0rmse": extract_f0rmse, | |
| "v_uv_f1": extract_f1_v_uv, | |
| "cer": extract_cer, | |
| "wer": extract_wer, | |
| "speaker_similarity": extract_speaker_similarity, | |
| "fad": extract_fad, | |
| "mcd": extract_mcd, | |
| "mstft": extract_mstft, | |
| "pesq": extract_pesq, | |
| "si_sdr": extract_si_sdr, | |
| "si_snr": extract_si_snr, | |
| "stoi": extract_stoi, | |
| } | |
| def calc_metric(ref_dir, deg_dir, dump_dir, metrics, fs=None): | |
| result = defaultdict() | |
| for metric in tqdm(metrics): | |
| if metric in ["fad", "speaker_similarity"]: | |
| result[metric] = str(METRIC_FUNC[metric](ref_dir, deg_dir)) | |
| continue | |
| audios_ref = [] | |
| audios_deg = [] | |
| files = glob(ref_dir + "/*.wav") | |
| for file in files: | |
| audios_ref.append(file) | |
| uid = file.split("/")[-1].split(".wav")[0] | |
| file_gt = deg_dir + "/{}.wav".format(uid) | |
| audios_deg.append(file_gt) | |
| if metric in ["v_uv_f1"]: | |
| tp_total = 0 | |
| fp_total = 0 | |
| fn_total = 0 | |
| for i in tqdm(range(len(audios_ref))): | |
| audio_ref = audios_ref[i] | |
| audio_deg = audios_deg[i] | |
| tp, fp, fn = METRIC_FUNC[metric](audio_ref, audio_deg, fs) | |
| tp_total += tp | |
| fp_total += fp | |
| fn_total += fn | |
| result[metric] = str(tp_total / (tp_total + (fp_total + fn_total) / 2)) | |
| else: | |
| scores = [] | |
| for i in tqdm(range(len(audios_ref))): | |
| audio_ref = audios_ref[i] | |
| audio_deg = audios_deg[i] | |
| score = METRIC_FUNC[metric]( | |
| audio_ref=audio_ref, audio_deg=audio_deg, fs=fs | |
| ) | |
| if not np.isnan(score): | |
| scores.append(score) | |
| scores = np.array(scores) | |
| result["{}_mean".format(metric)] = str(np.mean(scores)) | |
| result["{}_std".format(metric)] = str(np.std(scores)) | |
| data = json.dumps(result, indent=4) | |
| with open(os.path.join(dump_dir, "result.json"), "w", newline="\n") as f: | |
| f.write(data) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--ref_dir", | |
| type=str, | |
| help="Path to the target audio folder.", | |
| ) | |
| parser.add_argument( | |
| "--deg_dir", | |
| type=str, | |
| help="Path to the reference audio folder.", | |
| ) | |
| parser.add_argument( | |
| "--dump_dir", | |
| type=str, | |
| help="Path to dump the results.", | |
| ) | |
| parser.add_argument( | |
| "--metrics", | |
| nargs="+", | |
| help="Metrics used to evaluate.", | |
| ) | |
| args = parser.parse_args() | |
| calc_metric(args.ref_dir, args.deg_dir, args.dump_dir, args.metrics) | |