Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # This code is modified from | |
| # https://github.com/lifeiteng/vall-e/blob/9c69096d603ce13174fb5cb025f185e2e9b36ac7/valle/data/input_strategies.py | |
| import random | |
| from collections import defaultdict | |
| from concurrent.futures import ThreadPoolExecutor | |
| from typing import Tuple, Type | |
| from lhotse import CutSet | |
| from lhotse.dataset.collation import collate_features | |
| from lhotse.dataset.input_strategies import ( | |
| ExecutorType, | |
| PrecomputedFeatures, | |
| _get_executor, | |
| ) | |
| from lhotse.utils import fastcopy | |
| class PromptedFeatures: | |
| def __init__(self, prompts, features): | |
| self.prompts = prompts | |
| self.features = features | |
| def to(self, device): | |
| return PromptedFeatures( | |
| self.prompts.to(device), self.features.to(device) | |
| ) | |
| def sum(self): | |
| return self.features.sum() | |
| def ndim(self): | |
| return self.features.ndim | |
| def data(self): | |
| return (self.prompts, self.features) | |
| class PromptedPrecomputedFeatures(PrecomputedFeatures): | |
| def __init__( | |
| self, | |
| dataset: str, | |
| cuts: CutSet, | |
| num_workers: int = 0, | |
| executor_type: Type[ExecutorType] = ThreadPoolExecutor, | |
| ) -> None: | |
| super().__init__(num_workers, executor_type) | |
| self.utt2neighbors = self._create_utt2neighbors(dataset, cuts) | |
| def __call__( | |
| self, cuts: CutSet | |
| ) -> Tuple[PromptedFeatures, PromptedFeatures]: | |
| features, features_lens = self._collate_features(cuts) | |
| prompts, prompts_lens = self._collate_prompts(cuts) | |
| return PromptedFeatures(prompts, features), PromptedFeatures(prompts_lens, features_lens) | |
| def _create_utt2neighbors(self, dataset, cuts): | |
| utt2neighbors = defaultdict(lambda: []) | |
| utt2cut = {cut.id: cut for cut in cuts} | |
| if dataset.lower() == "libritts": | |
| self._process_libritts_dataset(utt2neighbors, utt2cut, cuts) | |
| elif dataset.lower() == "ljspeech": | |
| self._process_ljspeech_dataset(utt2neighbors, utt2cut, cuts) | |
| else: | |
| raise ValueError("Unsupported dataset") | |
| return utt2neighbors | |
| def _process_libritts_dataset(self, utt2neighbors, utt2cut, cuts): | |
| speaker2utts = defaultdict(lambda: []) | |
| for cut in cuts: | |
| speaker = cut.supervisions[0].speaker | |
| speaker2utts[speaker].append(cut.id) | |
| for spk, uttids in speaker2utts.items(): | |
| sorted_uttids = sorted(uttids) | |
| if len(sorted_uttids) == 1: | |
| utt2neighbors[sorted_uttids[0]].append(utt2cut[sorted_uttids[0]]) | |
| continue | |
| utt2prevutt = dict(zip(sorted_uttids, [sorted_uttids[1]] + sorted_uttids[:-1])) | |
| utt2postutt = dict(zip(sorted_uttids[:-1], sorted_uttids[1:])) | |
| for utt in sorted_uttids: | |
| if utt in utt2prevutt: | |
| utt2neighbors[utt].append(utt2cut[utt2prevutt[utt]]) | |
| if utt in utt2postutt: | |
| utt2neighbors[utt].append(utt2cut[utt2postutt[utt]]) | |
| def _process_ljspeech_dataset(self, utt2neighbors, utt2cut, cuts): | |
| uttids = [cut.id for cut in cuts] | |
| if len(uttids) == 1: | |
| utt2neighbors[uttids[0]].append(utt2cut[uttids[0]]) | |
| return | |
| utt2prevutt = dict(zip(uttids, [uttids[1]] + uttids[:-1])) | |
| utt2postutt = dict(zip(uttids[:-1], uttids[1:])) | |
| for utt in uttids: | |
| prevutt, postutt = utt2prevutt.get(utt), utt2postutt.get(utt) | |
| if prevutt and utt[:5] == prevutt[:5]: | |
| utt2neighbors[utt].append(utt2cut[prevutt]) | |
| if postutt and utt[:5] == postutt[:5]: | |
| utt2neighbors[utt].append(utt2cut[postutt]) | |
| def _collate_features(self, cuts): | |
| return collate_features( | |
| cuts, executor=_get_executor(self.num_workers, executor_type=self._executor_type) | |
| ) | |
| def _collate_prompts(self, cuts): | |
| prompts_cuts = [] | |
| for k, cut in enumerate(cuts): | |
| prompts_cut = random.choice(self.utt2neighbors[cut.id]) | |
| prompts_cuts.append(fastcopy(prompts_cut, id=f"{cut.id}-{str(k)}")) | |
| mini_duration = min([cut.duration for cut in prompts_cuts] + [3.0]) | |
| prompts_cuts = CutSet( | |
| cuts={k: cut for k, cut in enumerate(prompts_cuts)} | |
| ).truncate(max_duration=mini_duration, offset_type="random", preserve_id=False) | |
| return collate_features( | |
| prompts_cuts, executor=_get_executor(self.num_workers, executor_type=self._executor_type) | |
| ) | |