Spaces:
Sleeping
Sleeping
Ali Moughnieh
commited on
Commit
·
5446629
1
Parent(s):
62478f7
initial commit
Browse files- .gitignore +6 -0
- 1_curate_data.py +29 -0
- 2_ingest.py +68 -0
- app.py +88 -0
- requirements.txt +9 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data
|
| 2 |
+
.git
|
| 3 |
+
.idea
|
| 4 |
+
__pycache__
|
| 5 |
+
venv
|
| 6 |
+
.env
|
1_curate_data.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
full_dataset = load_dataset("wikimedia/wikipedia", "20231101.en", split='train')
|
| 6 |
+
|
| 7 |
+
dataset = full_dataset.shuffle(seed=42).select(range(50000))
|
| 8 |
+
|
| 9 |
+
script_dir = os.getcwd()
|
| 10 |
+
data_folder = os.path.join(script_dir, 'data', 'raw_documents')
|
| 11 |
+
|
| 12 |
+
if not os.path.exists(data_folder):
|
| 13 |
+
os.makedirs(data_folder)
|
| 14 |
+
|
| 15 |
+
for article in dataset:
|
| 16 |
+
article_data = {
|
| 17 |
+
'id': article['id'],
|
| 18 |
+
'url': article['url'],
|
| 19 |
+
'title': article['title'],
|
| 20 |
+
'text': article['text'],
|
| 21 |
+
}
|
| 22 |
+
file_path = os.path.join(data_folder, f"{article['id']}.json")
|
| 23 |
+
if not os.path.exists(file_path):
|
| 24 |
+
with open(file_path, 'w', encoding='utf-8') as f:
|
| 25 |
+
print(f.name, 'does not exist. creating file..')
|
| 26 |
+
json.dump(article_data, f, indent=4)
|
| 27 |
+
|
| 28 |
+
if __name__ == '__main__':
|
| 29 |
+
pass
|
2_ingest.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from langchain_core.documents import Document
|
| 4 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 6 |
+
from langchain_chroma import Chroma
|
| 7 |
+
|
| 8 |
+
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 9 |
+
|
| 10 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 11 |
+
data_folder = os.path.join(script_dir, 'data', 'raw_documents')
|
| 12 |
+
|
| 13 |
+
files = os.listdir(data_folder)
|
| 14 |
+
|
| 15 |
+
db_path = os.path.join(script_dir, 'data', 'chroma_db')
|
| 16 |
+
|
| 17 |
+
if not os.path.exists(db_path):
|
| 18 |
+
document_to_store = []
|
| 19 |
+
for file in files:
|
| 20 |
+
with open(os.path.join(data_folder, file), 'r', encoding='utf-8') as f:
|
| 21 |
+
json_dict = json.load(f)
|
| 22 |
+
content = json_dict['text']
|
| 23 |
+
metadata = {key: value for key, value in json_dict.items() if key != 'text'}
|
| 24 |
+
document = Document(page_content=content,
|
| 25 |
+
metadata=metadata)
|
| 26 |
+
document_to_store.append(document)
|
| 27 |
+
|
| 28 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 29 |
+
texts = text_splitter.split_documents(document_to_store)
|
| 30 |
+
min_chunk_size = 50
|
| 31 |
+
long_texts = [doc for doc in texts if len(doc.page_content) > min_chunk_size]
|
| 32 |
+
print(f"Original number of chunks: {len(texts)}")
|
| 33 |
+
print(f"Number of chunks after filtering: {len(long_texts)}")
|
| 34 |
+
|
| 35 |
+
# creating vector database using filtered chunks
|
| 36 |
+
print('Creating the vector database...')
|
| 37 |
+
db = Chroma.from_documents(long_texts,
|
| 38 |
+
embedding_function,
|
| 39 |
+
persist_directory=db_path)
|
| 40 |
+
|
| 41 |
+
print('Finished creating the vector database.')
|
| 42 |
+
|
| 43 |
+
else:
|
| 44 |
+
print('Vector database already exists. Loading...')
|
| 45 |
+
db = Chroma(
|
| 46 |
+
persist_directory=db_path,
|
| 47 |
+
embedding_function=embedding_function
|
| 48 |
+
)
|
| 49 |
+
print('Vector database loaded')
|
| 50 |
+
|
| 51 |
+
print("Checking titles in the database...")
|
| 52 |
+
|
| 53 |
+
retrieved_items = db.get(
|
| 54 |
+
limit=1000000,
|
| 55 |
+
include=['metadatas']
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
unique_titles = set()
|
| 59 |
+
for metadata in retrieved_items['metadatas']:
|
| 60 |
+
if 'title' in metadata:
|
| 61 |
+
unique_titles.add((metadata['title'], metadata['id']))
|
| 62 |
+
|
| 63 |
+
print(f"\n--- {len(unique_titles)} Unique Article Titles Found ---")
|
| 64 |
+
for title in sorted(list(unique_titles)):
|
| 65 |
+
print(title)
|
| 66 |
+
|
| 67 |
+
if __name__ == '__main__':
|
| 68 |
+
pass
|
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from langchain_chroma import Chroma
|
| 5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 8 |
+
from langchain.chains import create_retrieval_chain
|
| 9 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
st.title("AI-Powered Wikipedia Explorer")
|
| 16 |
+
|
| 17 |
+
@st.cache_resource
|
| 18 |
+
def load_chain():
|
| 19 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 20 |
+
db_path = os.path.join(script_dir, 'data')
|
| 21 |
+
|
| 22 |
+
persist_directory = os.path.join(db_path, 'chroma_db')
|
| 23 |
+
|
| 24 |
+
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 25 |
+
|
| 26 |
+
db = Chroma(
|
| 27 |
+
persist_directory=persist_directory,
|
| 28 |
+
embedding_function=embedding_function
|
| 29 |
+
)
|
| 30 |
+
print(db._collection.metadata)
|
| 31 |
+
|
| 32 |
+
llm = ChatGoogleGenerativeAI(
|
| 33 |
+
model="gemini-2.5-flash-lite",
|
| 34 |
+
google_api_key=os.getenv("GOOGLE_API_KEY")
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
template = '''
|
| 38 |
+
Answer the question based only on the following knowledge base:
|
| 39 |
+
{context}
|
| 40 |
+
|
| 41 |
+
Question: {input}
|
| 42 |
+
|
| 43 |
+
Please remember, if the knowledge base does not include relevant information
|
| 44 |
+
pertaining to the question, do not provide information from your own
|
| 45 |
+
memory, only provide information from the given knowledge base.
|
| 46 |
+
'''
|
| 47 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 48 |
+
|
| 49 |
+
retriever = db.as_retriever(
|
| 50 |
+
search_type="similarity_score_threshold",
|
| 51 |
+
search_kwargs={'score_threshold': 0.3,
|
| 52 |
+
'k': 6}
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
| 56 |
+
|
| 57 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 58 |
+
|
| 59 |
+
return retrieval_chain
|
| 60 |
+
|
| 61 |
+
chain = load_chain()
|
| 62 |
+
|
| 63 |
+
user_question = st.text_input("Ask a question about the articles:")
|
| 64 |
+
|
| 65 |
+
if st.button("Get Answer"):
|
| 66 |
+
if user_question:
|
| 67 |
+
with st.spinner("Thinking..."):
|
| 68 |
+
response = chain.invoke({"input": user_question})
|
| 69 |
+
|
| 70 |
+
if not response["context"]:
|
| 71 |
+
st.header("Answer")
|
| 72 |
+
st.write("I'm sorry, I couldn't find any relevant information in the documents to answer your question.")
|
| 73 |
+
with st.expander("Show Sources"):
|
| 74 |
+
st.write("Number of documents: 0")
|
| 75 |
+
else:
|
| 76 |
+
st.header("Answer")
|
| 77 |
+
st.write(response["answer"])
|
| 78 |
+
|
| 79 |
+
with st.expander("Show Sources"):
|
| 80 |
+
for doc in response["context"]:
|
| 81 |
+
st.write(f"**Source:** {doc.metadata.get('title', 'Unknown Title')}, **ID:** {doc.metadata.get('id', 'Unknown ID')}")
|
| 82 |
+
st.write(f"**URL:** {doc.metadata.get('url', 'No URL')}")
|
| 83 |
+
st.write(f"**Content:** {doc.page_content}")
|
| 84 |
+
st.write("---")
|
| 85 |
+
st.write(f"Number of documents: {len(response['context'])}")
|
| 86 |
+
else:
|
| 87 |
+
st.warning("Please enter a question first.")
|
| 88 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
datasets
|
| 3 |
+
langchain
|
| 4 |
+
langchain-google-genai
|
| 5 |
+
langchain-chroma
|
| 6 |
+
langchain-huggingface
|
| 7 |
+
langchain-text-splitters
|
| 8 |
+
sentence-transformers
|
| 9 |
+
python-dotenv
|