import gradio as gr import torch from PIL import Image from models.transformer_sd3 import SD3Transformer2DModel from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline import os from huggingface_hub import login token = os.getenv("HF_TOKEN") login(token=token) # Model and paths model_path = 'stabilityai/stable-diffusion-3.5-large' ip_adapter_path = './ip-adapter.bin' image_encoder_path = "google/siglip-so400m-patch14-384" ref_img_path = './assets/1.jpg' # Reference image path # Load SD3.5 pipeline and components transformer = SD3Transformer2DModel.from_pretrained( model_path, subfolder="transformer", torch_dtype=torch.bfloat16 ) pipe = StableDiffusion3Pipeline.from_pretrained( model_path, transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") pipe.init_ipadapter( ip_adapter_path=ip_adapter_path, image_encoder_path=image_encoder_path, nb_token=64, ) @gr.Interface() def gui_generation(prompt: str, negative_prompt: str, ipadapter_scale: float, num_imgs: int): """ Generate images based on prompt, negative prompt, and IP-Adapter scale. """ ref_img = Image.open(ref_img_path).convert('RGB') # Load reference image generator = torch.Generator("cuda").manual_seed(42) # Reproducibility images = [] for _ in range(num_imgs): output = pipe( width=1024, height=1024, prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=24, guidance_scale=5.0, generator=generator, clip_image=ref_img, ipadapter_scale=ipadapter_scale, ).images[0] images.append(output) return images # Gradio UI elements prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your generation prompt here") negative_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="e.g., lowres, worst quality") ipadapter_slider = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="IP-Adapter Scale") number_slider = gr.Slider(1, 5, value=1, step=1, label="Number of Images") gallery = gr.Gallery(label="Generated Images", columns=[3], rows=[1], object_fit="contain", height="auto") interface = gr.Interface( gui_generation, inputs=[prompt_box, negative_prompt_box, ipadapter_slider, number_slider], outputs=gallery, title="Stable Diffusion 3.5 Image Generation with IP-Adapter", description="Generate high-quality images with Stable Diffusion 3.5 Large and IP-Adapter guidance." ) interface.launch()