Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
|
@@ -1,58 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import
|
| 4 |
-
from diffusers.utils import export_to_gif
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
pipe = AnimateDiffPipeline.from_pretrained(
|
| 13 |
-
model_id, motion_adapter=adapter, torch_dtype=torch.float32
|
| 14 |
-
).to(device)
|
| 15 |
-
|
| 16 |
-
scheduler = DDIMScheduler.from_pretrained(
|
| 17 |
model_id,
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
beta_schedule="linear",
|
| 22 |
-
steps_offset=1,
|
| 23 |
-
)
|
| 24 |
-
pipe.scheduler = scheduler
|
| 25 |
-
|
| 26 |
-
pipe.enable_vae_slicing()
|
| 27 |
|
| 28 |
-
# Define the
|
| 29 |
-
def
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
prompt=prompt,
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
guidance_scale=
|
| 35 |
-
num_inference_steps=
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
frames = output.frames[0]
|
| 39 |
-
gif_path = "animation.gif"
|
| 40 |
-
export_to_gif(frames, gif_path)
|
| 41 |
-
return gif_path
|
| 42 |
|
| 43 |
-
# Gradio
|
| 44 |
-
|
| 45 |
-
fn=
|
| 46 |
inputs=[
|
| 47 |
-
gr.Textbox(
|
| 48 |
-
gr.
|
| 49 |
-
gr.Slider(1, 24, value=16, label="Number of Frames"),
|
| 50 |
-
gr.Slider(1.0, 10.0, value=7.5, step=0.1, label="Guidance Scale"),
|
| 51 |
-
gr.Slider(1, 50, value=25, label="Inference Steps"),
|
| 52 |
],
|
| 53 |
-
outputs=
|
| 54 |
-
title="
|
| 55 |
-
description="Generate
|
| 56 |
)
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
|
|
|
| 4 |
|
| 5 |
+
# Load Stable Diffusion model and ControlNet reference-only model
|
| 6 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
| 7 |
+
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Use an appropriate ControlNet variant
|
| 8 |
|
| 9 |
+
# Initialize the pipeline on CPU
|
| 10 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float32)
|
| 11 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
model_id,
|
| 13 |
+
controlnet=controlnet,
|
| 14 |
+
torch_dtype=torch.float32
|
| 15 |
+
).to("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Define the Gradio interface function
|
| 18 |
+
def generate_image(prompt, reference_image):
|
| 19 |
+
# Process reference image
|
| 20 |
+
reference_image = reference_image.resize((512, 512))
|
| 21 |
+
# Generate image with reference-only style transfer
|
| 22 |
+
generated_image = pipeline(
|
| 23 |
prompt=prompt,
|
| 24 |
+
image=reference_image,
|
| 25 |
+
controlnet_conditioning_scale=1.0,
|
| 26 |
+
guidance_scale=7.5,
|
| 27 |
+
num_inference_steps=50
|
| 28 |
+
).images[0]
|
| 29 |
+
return generated_image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Set up Gradio interface
|
| 32 |
+
interface = gr.Interface(
|
| 33 |
+
fn=generate_image,
|
| 34 |
inputs=[
|
| 35 |
+
gr.Textbox(label="Prompt"),
|
| 36 |
+
gr.Image(type="pil", label="Reference Image (Style)")
|
|
|
|
|
|
|
|
|
|
| 37 |
],
|
| 38 |
+
outputs="image",
|
| 39 |
+
title="Image Generation with Reference-Only Style Transfer",
|
| 40 |
+
description="Generate an image based on a text prompt and style reference image using Stable Diffusion 3.5 with ControlNet (reference-only mode)."
|
| 41 |
)
|
| 42 |
|
| 43 |
+
# Launch the Gradio interface
|
| 44 |
+
interface.launch()
|