Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
|
@@ -1,32 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
from
|
| 6 |
import os
|
| 7 |
-
import
|
| 8 |
-
import torch
|
| 9 |
-
|
| 10 |
|
| 11 |
token = os.getenv("HF_TOKEN")
|
| 12 |
login(token=token)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from models.transformer_sd3 import SD3Transformer2DModel
|
| 5 |
+
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 6 |
import os
|
| 7 |
+
from huggingface_hub import login
|
|
|
|
|
|
|
| 8 |
|
| 9 |
token = os.getenv("HF_TOKEN")
|
| 10 |
login(token=token)
|
| 11 |
+
|
| 12 |
+
# Model and paths
|
| 13 |
+
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
| 14 |
+
ip_adapter_path = './ip-adapter.bin'
|
| 15 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 16 |
+
ref_img_path = './assets/1.jpg' # Reference image path
|
| 17 |
+
|
| 18 |
+
# Load SD3.5 pipeline and components
|
| 19 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
| 20 |
+
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
| 21 |
+
)
|
| 22 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 23 |
+
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
| 24 |
+
).to("cuda")
|
| 25 |
+
|
| 26 |
+
pipe.init_ipadapter(
|
| 27 |
+
ip_adapter_path=ip_adapter_path,
|
| 28 |
+
image_encoder_path=image_encoder_path,
|
| 29 |
+
nb_token=64,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@gr.Interface()
|
| 34 |
+
def gui_generation(prompt: str, negative_prompt: str, ipadapter_scale: float, num_imgs: int):
|
| 35 |
+
"""
|
| 36 |
+
Generate images based on prompt, negative prompt, and IP-Adapter scale.
|
| 37 |
+
"""
|
| 38 |
+
ref_img = Image.open(ref_img_path).convert('RGB') # Load reference image
|
| 39 |
+
generator = torch.Generator("cuda").manual_seed(42) # Reproducibility
|
| 40 |
+
|
| 41 |
+
images = []
|
| 42 |
+
for _ in range(num_imgs):
|
| 43 |
+
output = pipe(
|
| 44 |
+
width=1024,
|
| 45 |
+
height=1024,
|
| 46 |
+
prompt=prompt,
|
| 47 |
+
negative_prompt=negative_prompt,
|
| 48 |
+
num_inference_steps=24,
|
| 49 |
+
guidance_scale=5.0,
|
| 50 |
+
generator=generator,
|
| 51 |
+
clip_image=ref_img,
|
| 52 |
+
ipadapter_scale=ipadapter_scale,
|
| 53 |
+
).images[0]
|
| 54 |
+
images.append(output)
|
| 55 |
+
return images
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Gradio UI elements
|
| 59 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your generation prompt here")
|
| 60 |
+
negative_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="e.g., lowres, worst quality")
|
| 61 |
+
ipadapter_slider = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="IP-Adapter Scale")
|
| 62 |
+
number_slider = gr.Slider(1, 5, value=1, step=1, label="Number of Images")
|
| 63 |
+
gallery = gr.Gallery(label="Generated Images", columns=[3], rows=[1], object_fit="contain", height="auto")
|
| 64 |
+
|
| 65 |
+
interface = gr.Interface(
|
| 66 |
+
gui_generation,
|
| 67 |
+
inputs=[prompt_box, negative_prompt_box, ipadapter_slider, number_slider],
|
| 68 |
+
outputs=gallery,
|
| 69 |
+
title="Stable Diffusion 3.5 Image Generation with IP-Adapter",
|
| 70 |
+
description="Generate high-quality images with Stable Diffusion 3.5 Large and IP-Adapter guidance."
|
| 71 |
+
)
|
| 72 |
|
| 73 |
interface.launch()
|