test_gradio / app.py
amos1088's picture
test gradio
c1497a6
raw
history blame
1.8 kB
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import os
from huggingface_hub import login
# Log in with your Hugging Face token (assumed stored in HF_TOKEN)
token = os.getenv("HF_TOKEN")
login(token=token)
# Model IDs for the base Stable Diffusion model and ControlNet variant
model_id = "stabilityai/stable-diffusion-3.5-large-turbo"
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Make sure this ControlNet is compatible
# Load ControlNet model and pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float32)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
torch_dtype=torch.float32
)
pipeline = pipeline.to("cuda") if torch.cuda.is_available() else pipeline
# Define the Gradio interface function
def generate_image(prompt, reference_image):
# Ensure the reference image is in the correct format
reference_image = reference_image.convert("RGB").resize((512, 512))
# Generate the image with ControlNet
generated_image = pipeline(
prompt=prompt,
image=reference_image,
controlnet_conditioning_scale=1.0,
guidance_scale=7.5,
num_inference_steps=50
).images[0]
return generated_image
# Set up Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Image(type="pil", label="Reference Image (Style)")
],
outputs="image",
title="Image Generation with Reference-Only Style Transfer",
description="Generate an image based on a text prompt and style reference image using Stable Diffusion 3.5 with ControlNet (reference-only mode)."
)
# Launch the Gradio interface
interface.launch()