Spaces:
Paused
Paused
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
import os | |
from huggingface_hub import login | |
# Log in with your Hugging Face token (assumed stored in HF_TOKEN) | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
# Model IDs for the base Stable Diffusion model and ControlNet variant | |
model_id = "stabilityai/stable-diffusion-3.5-large-turbo" | |
controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" # Make sure this ControlNet is compatible | |
# Load ControlNet model and pipeline | |
controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float32) | |
pipeline = StableDiffusionControlNetPipeline.from_pretrained( | |
model_id, | |
controlnet=controlnet, | |
torch_dtype=torch.float32 | |
) | |
pipeline = pipeline.to("cuda") if torch.cuda.is_available() else pipeline | |
# Define the Gradio interface function | |
def generate_image(prompt, reference_image): | |
# Ensure the reference image is in the correct format | |
reference_image = reference_image.convert("RGB").resize((512, 512)) | |
# Generate the image with ControlNet | |
generated_image = pipeline( | |
prompt=prompt, | |
image=reference_image, | |
controlnet_conditioning_scale=1.0, | |
guidance_scale=7.5, | |
num_inference_steps=50 | |
).images[0] | |
return generated_image | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Image(type="pil", label="Reference Image (Style)") | |
], | |
outputs="image", | |
title="Image Generation with Reference-Only Style Transfer", | |
description="Generate an image based on a text prompt and style reference image using Stable Diffusion 3.5 with ControlNet (reference-only mode)." | |
) | |
# Launch the Gradio interface | |
interface.launch() | |