Spaces:
Paused
Paused
| import os | |
| import requests | |
| url = "https://huggingface.co/InstantX/SD3.5-Large-IP-Adapter/resolve/main/ip-adapter.bin" | |
| file_path = "ip-adapter.bin" | |
| # Check if the file already exists | |
| if not os.path.exists(file_path): | |
| print("File not found, downloading...") | |
| response = requests.get(url, stream=True) | |
| with open(file_path, "wb") as file: | |
| for chunk in response.iter_content(chunk_size=1024): | |
| if chunk: | |
| file.write(chunk) | |
| print("Download completed!") | |
| else: | |
| print("File already exists.") | |
| from models.transformer_sd3 import SD3Transformer2DModel | |
| import gradio as gr | |
| import torch | |
| from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline | |
| import os | |
| import spaces | |
| from huggingface_hub import login | |
| token = os.getenv("HF_TOKEN") | |
| login(token=token) | |
| # Model and Pipeline Setup | |
| model_path = 'stabilityai/stable-diffusion-3.5-large' | |
| ip_adapter_path = './ip-adapter.bin' | |
| image_encoder_path = "google/siglip-so400m-patch14-384" | |
| # Load transformer and pipeline | |
| transformer = SD3Transformer2DModel.from_pretrained( | |
| model_path, subfolder="transformer", torch_dtype=torch.bfloat16 | |
| ) | |
| pipe = StableDiffusion3Pipeline.from_pretrained( | |
| model_path, transformer=transformer, torch_dtype=torch.bfloat16 | |
| ).to("cuda") | |
| # Initialize IP Adapter | |
| pipe.init_ipadapter( | |
| ip_adapter_path=ip_adapter_path, | |
| image_encoder_path=image_encoder_path, | |
| nb_token=64, | |
| ) | |
| def gui_generation(text, num_imgs, width, height): | |
| """ | |
| Generate images using Stable Diffusion 3.5 | |
| """ | |
| images = pipe( | |
| prompt=text, | |
| width=width, | |
| height=height, | |
| num_images_per_prompt=num_imgs, | |
| negative_prompt="lowres, low quality, worst quality", | |
| num_inference_steps=24, | |
| guidance_scale=5.0, | |
| generator=torch.Generator("cuda").manual_seed(42), | |
| ).images | |
| return images | |
| # Create Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Stable Diffusion 3.5 Image Generation") | |
| with gr.Row(): | |
| prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your image generation prompt") | |
| number_slider = gr.Slider(1, 30, value=2, step=1, label="Batch size") | |
| with gr.Row(): | |
| width_slider = gr.Slider(256, 1536, value=1024, step=64, label="Width") | |
| height_slider = gr.Slider(256, 1536, value=1024, step=64, label="Height") | |
| gallery = gr.Gallery(columns=[3], rows=[1], object_fit="contain", height="auto") | |
| generate_btn = gr.Button("Generate") | |
| generate_btn.click( | |
| fn=gui_generation, | |
| inputs=[prompt_box, number_slider, width_slider, height_slider], | |
| outputs=gallery | |
| ) | |
| demo.launch() | |