import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from configs.download_files import FileDownloader from configs.db_configs import add_one_item from streamlit.components.v1 import html from configs.html_features import set_image from rouge import Rouge import pandas as pd def summarize_text(text): prefix = 'summarize: ' text = prefix + text tokenizer = AutoTokenizer.from_pretrained('stevhliu/my_awesome_billsum_model') input_ids = tokenizer(text=text, return_tensors='pt')['input_ids'] model = AutoModelForSeq2SeqLM.from_pretrained('stevhliu/my_awesome_billsum_model') if len(input_ids[0]) < 200: output_ids = model.generate(input_ids, max_new_tokens=100, do_sample=False) summarized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return summarized_text elif len(input_ids[0]) > 200: output_ids = model.generate(input_ids, max_new_tokens=round(len(input_ids[0]) * 1/2), do_sample=False) summarized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return summarized_text def validate_summarization(original_text, summarized_text): rouge_score = Rouge() return rouge_score.get_scores(summarized_text, original_text) def main(): st.title('Text Summarizer') im1, im2, im3 = st.columns([1, 5.3, 1]) with im1: pass with im2: url = "https://i.postimg.cc/jdF1hPng/combined.png" html(set_image(url), height=400, width=400) with im3: pass text = st.text_area('Text Summarizer', placeholder='Enter your input text here ...', height=200, label_visibility='hidden') if st.button('Summarize it'): if text != "": with st.expander('Original Text'): st.write(text) add_one_item(text, "Text Summarizer") with st.expander('Summarized Text'): summarized_text = summarize_text(text) st.write(summarized_text) col1, col2 = st.columns(2) with col1: with st.expander('Download Summarized Text'): FileDownloader(summarized_text, 'txt').download() with col2: with st.expander('Summarized Text Validation'): scores = validate_summarization(text, summarized_text) df = pd.DataFrame(scores[0]).T df.columns = ['Recall', 'Precision', 'F1'] st.write(df) else: st.error('Please enter a non-empty text.') if __name__ == '__main__': main()