ameerazam08 commited on
Commit
2e70b06
Β·
verified Β·
1 Parent(s): fb9b495

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -318
app.py CHANGED
@@ -1,318 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- from __future__ import annotations
4
-
5
- import os
6
- import random
7
-
8
- import gradio as gr
9
- import numpy as np
10
- import PIL.Image
11
- import spaces
12
- import torch
13
- from diffusers import AutoencoderKL, DiffusionPipeline
14
-
15
- DESCRIPTION = """
16
- # TempestV0.1
17
-
18
- **Demo by [ameer azam) - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
19
-
20
- This is a demo of <a href="https://huggingface.co/dataautogpt3/TempestV0.1">TempestV0.1</a> by @dataautogpt3.
21
-
22
- **The code for this demo is based on [@hysts's SD-XL demo](https://huggingface.co/spaces/hysts/SD-XL) running on a A10G GPU.**
23
- """
24
- if not torch.cuda.is_available():
25
- DESCRIPTION += "\n<h1>Running on CPU πŸ₯Ά This demo does not work on CPU.</a> instead</h1>"
26
-
27
- MAX_SEED = np.iinfo(np.int32).max
28
- CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
29
- MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2024"))
30
- USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
31
- ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
32
- ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0")#
33
-
34
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
35
- if torch.cuda.is_available():
36
- vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
37
- pipe = DiffusionPipeline.from_pretrained(
38
- "dataautogpt3/TempestV0.1",
39
- vae=vae,
40
- torch_dtype=torch.float16,
41
- # variant="fp16",
42
- )
43
- if ENABLE_REFINER:
44
- refiner = DiffusionPipeline.from_pretrained(
45
- "stabilityai/stable-diffusion-xl-refiner-1.0",
46
- vae=vae,
47
- torch_dtype=torch.float16,
48
- # variant="fp16",
49
- )
50
-
51
- if ENABLE_CPU_OFFLOAD:
52
- pipe.enable_model_cpu_offload()
53
- if ENABLE_REFINER:
54
- refiner.enable_model_cpu_offload()
55
- else:
56
- pipe.to(device)
57
- if ENABLE_REFINER:
58
- refiner.to(device)
59
-
60
- if USE_TORCH_COMPILE:
61
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
62
- if ENABLE_REFINER:
63
- refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
64
-
65
-
66
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
67
- if randomize_seed:
68
- seed = random.randint(0, MAX_SEED)
69
- return seed
70
-
71
-
72
- @spaces.GPU(enable_queue=True)
73
- def generate(
74
- prompt: str,
75
- negative_prompt: str = "",
76
- prompt_2: str = "",
77
- negative_prompt_2: str = "",
78
- use_negative_prompt: bool = False,
79
- use_prompt_2: bool = False,
80
- use_negative_prompt_2: bool = False,
81
- seed: int = 0,
82
- width: int = 1024,
83
- height: int = 1024,
84
- guidance_scale_base: float = 5.0,
85
- guidance_scale_refiner: float = 7.0,
86
- num_inference_steps_base: int = 60,
87
- num_inference_steps_refiner: int = 35,
88
- apply_refiner: bool = False,
89
- progress=gr.Progress(track_tqdm=True),
90
- ) -> PIL.Image.Image:
91
- print(f"** Generating image for: \"{prompt}\" **")
92
- generator = torch.Generator().manual_seed(seed)
93
-
94
- if not use_negative_prompt:
95
- negative_prompt = None # type: ignore
96
- if not use_prompt_2:
97
- prompt_2 = None # type: ignore
98
- if not use_negative_prompt_2:
99
- negative_prompt_2 = None # type: ignore
100
-
101
- if not apply_refiner:
102
- return pipe(
103
- prompt=prompt,
104
- negative_prompt=negative_prompt,
105
- prompt_2=prompt_2,
106
- negative_prompt_2=negative_prompt_2,
107
- width=width,
108
- height=height,
109
- guidance_scale=guidance_scale_base,
110
- num_inference_steps=num_inference_steps_base,
111
- generator=generator,
112
- output_type="pil",
113
- ).images[0]
114
- else:
115
- latents = pipe(
116
- prompt=prompt,
117
- negative_prompt=negative_prompt,
118
- prompt_2=prompt_2,
119
- negative_prompt_2=negative_prompt_2,
120
- width=width,
121
- height=height,
122
- guidance_scale=guidance_scale_base,
123
- num_inference_steps=num_inference_steps_base,
124
- generator=generator,
125
- output_type="latent",
126
- ).images
127
- image = refiner(
128
- prompt=prompt,
129
- negative_prompt=negative_prompt,
130
- prompt_2=prompt_2,
131
- negative_prompt_2=negative_prompt_2,
132
- guidance_scale=guidance_scale_refiner,
133
- num_inference_steps=num_inference_steps_refiner,
134
- image=latents,
135
- generator=generator,
136
- ).images[0]
137
- return image
138
-
139
-
140
- examples = [
141
- "A realistic photograph of an astronaut in a jungle, cold color palette, detailed, 8k",
142
- "An astronaut riding a green horse",
143
- ]
144
-
145
- theme = gr.themes.Base(
146
- font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
147
- )
148
- with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
149
- gr.Markdown(DESCRIPTION)
150
- gr.DuplicateButton(
151
- value="Duplicate Space for private use",
152
- elem_id="duplicate-button",
153
- visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
154
- )
155
- with gr.Group():
156
- prompt = gr.Text(
157
- label="Prompt",
158
- show_label=False,
159
- max_lines=1,
160
- container=False,
161
- placeholder="Enter your prompt",
162
- )
163
- run_button = gr.Button("Generate")
164
- result = gr.Image(label="Result", show_label=False)
165
- with gr.Accordion("Advanced options", open=False):
166
- with gr.Row():
167
- use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
168
- use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
169
- use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
170
- negative_prompt = gr.Text(
171
- label="Negative prompt",
172
- max_lines=1,
173
- placeholder="Enter a negative prompt",
174
- visible=False,
175
- )
176
- prompt_2 = gr.Text(
177
- label="Prompt 2",
178
- max_lines=1,
179
- placeholder="Enter your prompt",
180
- visible=False,
181
- )
182
- negative_prompt_2 = gr.Text(
183
- label="Negative prompt 2",
184
- max_lines=1,
185
- placeholder="Enter a negative prompt",
186
- visible=False,
187
- )
188
-
189
- seed = gr.Slider(
190
- label="Seed",
191
- minimum=0,
192
- maximum=MAX_SEED,
193
- step=1,
194
- value=0,
195
- )
196
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
197
- with gr.Row():
198
- width = gr.Slider(
199
- label="Width",
200
- minimum=256,
201
- maximum=MAX_IMAGE_SIZE,
202
- step=32,
203
- value=1024,
204
- )
205
- height = gr.Slider(
206
- label="Height",
207
- minimum=256,
208
- maximum=MAX_IMAGE_SIZE,
209
- step=32,
210
- value=1024,
211
- )
212
- apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
213
- with gr.Row():
214
- guidance_scale_base = gr.Slider(
215
- label="Guidance scale for base",
216
- minimum=1,
217
- maximum=20,
218
- step=0.1,
219
- value=7.5,
220
- )
221
- num_inference_steps_base = gr.Slider(
222
- label="Number of inference steps for base",
223
- minimum=10,
224
- maximum=100,
225
- step=1,
226
- value=60,
227
- )
228
- with gr.Row(visible=False) as refiner_params:
229
- guidance_scale_refiner = gr.Slider(
230
- label="Guidance scale for refiner",
231
- minimum=1,
232
- maximum=20,
233
- step=0.1,
234
- value=7.5,
235
- )
236
- num_inference_steps_refiner = gr.Slider(
237
- label="Number of inference steps for refiner",
238
- minimum=10,
239
- maximum=100,
240
- step=1,
241
- value=30,
242
- )
243
-
244
- gr.Examples(
245
- examples=examples,
246
- inputs=prompt,
247
- outputs=result,
248
- fn=generate,
249
- cache_examples=CACHE_EXAMPLES,
250
- )
251
-
252
- use_negative_prompt.change(
253
- fn=lambda x: gr.update(visible=x),
254
- inputs=use_negative_prompt,
255
- outputs=negative_prompt,
256
- queue=False,
257
- api_name=False,
258
- )
259
- use_prompt_2.change(
260
- fn=lambda x: gr.update(visible=x),
261
- inputs=use_prompt_2,
262
- outputs=prompt_2,
263
- queue=False,
264
- api_name=False,
265
- )
266
- use_negative_prompt_2.change(
267
- fn=lambda x: gr.update(visible=x),
268
- inputs=use_negative_prompt_2,
269
- outputs=negative_prompt_2,
270
- queue=False,
271
- api_name=False,
272
- )
273
- apply_refiner.change(
274
- fn=lambda x: gr.update(visible=x),
275
- inputs=apply_refiner,
276
- outputs=refiner_params,
277
- queue=False,
278
- api_name=False,
279
- )
280
-
281
- gr.on(
282
- triggers=[
283
- prompt.submit,
284
- negative_prompt.submit,
285
- prompt_2.submit,
286
- negative_prompt_2.submit,
287
- run_button.click,
288
- ],
289
- fn=randomize_seed_fn,
290
- inputs=[seed, randomize_seed],
291
- outputs=seed,
292
- queue=False,
293
- api_name=False,
294
- ).then(
295
- fn=generate,
296
- inputs=[
297
- prompt,
298
- negative_prompt,
299
- prompt_2,
300
- negative_prompt_2,
301
- use_negative_prompt,
302
- use_prompt_2,
303
- use_negative_prompt_2,
304
- seed,
305
- width,
306
- height,
307
- guidance_scale_base,
308
- guidance_scale_refiner,
309
- num_inference_steps_base,
310
- num_inference_steps_refiner,
311
- apply_refiner,
312
- ],
313
- outputs=result,
314
- api_name="run",
315
- )
316
-
317
- if __name__ == "__main__":
318
- demo.queue(max_size=20, api_open=False).launch(show_api=False)