Spaces:
Runtime error
Runtime error
ameerazam08
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,318 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import os
|
6 |
-
import random
|
7 |
-
|
8 |
-
import gradio as gr
|
9 |
-
import numpy as np
|
10 |
-
import PIL.Image
|
11 |
-
import spaces
|
12 |
-
import torch
|
13 |
-
from diffusers import AutoencoderKL, DiffusionPipeline
|
14 |
-
|
15 |
-
DESCRIPTION = """
|
16 |
-
# TempestV0.1
|
17 |
-
|
18 |
-
**Demo by [ameer azam) - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
|
19 |
-
|
20 |
-
This is a demo of <a href="https://huggingface.co/dataautogpt3/TempestV0.1">TempestV0.1</a> by @dataautogpt3.
|
21 |
-
|
22 |
-
**The code for this demo is based on [@hysts's SD-XL demo](https://huggingface.co/spaces/hysts/SD-XL) running on a A10G GPU.**
|
23 |
-
"""
|
24 |
-
if not torch.cuda.is_available():
|
25 |
-
DESCRIPTION += "\n<h1>Running on CPU π₯Ά This demo does not work on CPU.</a> instead</h1>"
|
26 |
-
|
27 |
-
MAX_SEED = np.iinfo(np.int32).max
|
28 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
29 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2024"))
|
30 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
31 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
32 |
-
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0")#
|
33 |
-
|
34 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
-
if torch.cuda.is_available():
|
36 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
37 |
-
pipe = DiffusionPipeline.from_pretrained(
|
38 |
-
"dataautogpt3/TempestV0.1",
|
39 |
-
vae=vae,
|
40 |
-
torch_dtype=torch.float16,
|
41 |
-
# variant="fp16",
|
42 |
-
)
|
43 |
-
if ENABLE_REFINER:
|
44 |
-
refiner = DiffusionPipeline.from_pretrained(
|
45 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
46 |
-
vae=vae,
|
47 |
-
torch_dtype=torch.float16,
|
48 |
-
# variant="fp16",
|
49 |
-
)
|
50 |
-
|
51 |
-
if ENABLE_CPU_OFFLOAD:
|
52 |
-
pipe.enable_model_cpu_offload()
|
53 |
-
if ENABLE_REFINER:
|
54 |
-
refiner.enable_model_cpu_offload()
|
55 |
-
else:
|
56 |
-
pipe.to(device)
|
57 |
-
if ENABLE_REFINER:
|
58 |
-
refiner.to(device)
|
59 |
-
|
60 |
-
if USE_TORCH_COMPILE:
|
61 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
62 |
-
if ENABLE_REFINER:
|
63 |
-
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
64 |
-
|
65 |
-
|
66 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
67 |
-
if randomize_seed:
|
68 |
-
seed = random.randint(0, MAX_SEED)
|
69 |
-
return seed
|
70 |
-
|
71 |
-
|
72 |
-
@spaces.GPU(enable_queue=True)
|
73 |
-
def generate(
|
74 |
-
prompt: str,
|
75 |
-
negative_prompt: str = "",
|
76 |
-
prompt_2: str = "",
|
77 |
-
negative_prompt_2: str = "",
|
78 |
-
use_negative_prompt: bool = False,
|
79 |
-
use_prompt_2: bool = False,
|
80 |
-
use_negative_prompt_2: bool = False,
|
81 |
-
seed: int = 0,
|
82 |
-
width: int = 1024,
|
83 |
-
height: int = 1024,
|
84 |
-
guidance_scale_base: float = 5.0,
|
85 |
-
guidance_scale_refiner: float = 7.0,
|
86 |
-
num_inference_steps_base: int = 60,
|
87 |
-
num_inference_steps_refiner: int = 35,
|
88 |
-
apply_refiner: bool = False,
|
89 |
-
progress=gr.Progress(track_tqdm=True),
|
90 |
-
) -> PIL.Image.Image:
|
91 |
-
print(f"** Generating image for: \"{prompt}\" **")
|
92 |
-
generator = torch.Generator().manual_seed(seed)
|
93 |
-
|
94 |
-
if not use_negative_prompt:
|
95 |
-
negative_prompt = None # type: ignore
|
96 |
-
if not use_prompt_2:
|
97 |
-
prompt_2 = None # type: ignore
|
98 |
-
if not use_negative_prompt_2:
|
99 |
-
negative_prompt_2 = None # type: ignore
|
100 |
-
|
101 |
-
if not apply_refiner:
|
102 |
-
return pipe(
|
103 |
-
prompt=prompt,
|
104 |
-
negative_prompt=negative_prompt,
|
105 |
-
prompt_2=prompt_2,
|
106 |
-
negative_prompt_2=negative_prompt_2,
|
107 |
-
width=width,
|
108 |
-
height=height,
|
109 |
-
guidance_scale=guidance_scale_base,
|
110 |
-
num_inference_steps=num_inference_steps_base,
|
111 |
-
generator=generator,
|
112 |
-
output_type="pil",
|
113 |
-
).images[0]
|
114 |
-
else:
|
115 |
-
latents = pipe(
|
116 |
-
prompt=prompt,
|
117 |
-
negative_prompt=negative_prompt,
|
118 |
-
prompt_2=prompt_2,
|
119 |
-
negative_prompt_2=negative_prompt_2,
|
120 |
-
width=width,
|
121 |
-
height=height,
|
122 |
-
guidance_scale=guidance_scale_base,
|
123 |
-
num_inference_steps=num_inference_steps_base,
|
124 |
-
generator=generator,
|
125 |
-
output_type="latent",
|
126 |
-
).images
|
127 |
-
image = refiner(
|
128 |
-
prompt=prompt,
|
129 |
-
negative_prompt=negative_prompt,
|
130 |
-
prompt_2=prompt_2,
|
131 |
-
negative_prompt_2=negative_prompt_2,
|
132 |
-
guidance_scale=guidance_scale_refiner,
|
133 |
-
num_inference_steps=num_inference_steps_refiner,
|
134 |
-
image=latents,
|
135 |
-
generator=generator,
|
136 |
-
).images[0]
|
137 |
-
return image
|
138 |
-
|
139 |
-
|
140 |
-
examples = [
|
141 |
-
"A realistic photograph of an astronaut in a jungle, cold color palette, detailed, 8k",
|
142 |
-
"An astronaut riding a green horse",
|
143 |
-
]
|
144 |
-
|
145 |
-
theme = gr.themes.Base(
|
146 |
-
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
147 |
-
)
|
148 |
-
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
149 |
-
gr.Markdown(DESCRIPTION)
|
150 |
-
gr.DuplicateButton(
|
151 |
-
value="Duplicate Space for private use",
|
152 |
-
elem_id="duplicate-button",
|
153 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
154 |
-
)
|
155 |
-
with gr.Group():
|
156 |
-
prompt = gr.Text(
|
157 |
-
label="Prompt",
|
158 |
-
show_label=False,
|
159 |
-
max_lines=1,
|
160 |
-
container=False,
|
161 |
-
placeholder="Enter your prompt",
|
162 |
-
)
|
163 |
-
run_button = gr.Button("Generate")
|
164 |
-
result = gr.Image(label="Result", show_label=False)
|
165 |
-
with gr.Accordion("Advanced options", open=False):
|
166 |
-
with gr.Row():
|
167 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
168 |
-
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
169 |
-
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
170 |
-
negative_prompt = gr.Text(
|
171 |
-
label="Negative prompt",
|
172 |
-
max_lines=1,
|
173 |
-
placeholder="Enter a negative prompt",
|
174 |
-
visible=False,
|
175 |
-
)
|
176 |
-
prompt_2 = gr.Text(
|
177 |
-
label="Prompt 2",
|
178 |
-
max_lines=1,
|
179 |
-
placeholder="Enter your prompt",
|
180 |
-
visible=False,
|
181 |
-
)
|
182 |
-
negative_prompt_2 = gr.Text(
|
183 |
-
label="Negative prompt 2",
|
184 |
-
max_lines=1,
|
185 |
-
placeholder="Enter a negative prompt",
|
186 |
-
visible=False,
|
187 |
-
)
|
188 |
-
|
189 |
-
seed = gr.Slider(
|
190 |
-
label="Seed",
|
191 |
-
minimum=0,
|
192 |
-
maximum=MAX_SEED,
|
193 |
-
step=1,
|
194 |
-
value=0,
|
195 |
-
)
|
196 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
197 |
-
with gr.Row():
|
198 |
-
width = gr.Slider(
|
199 |
-
label="Width",
|
200 |
-
minimum=256,
|
201 |
-
maximum=MAX_IMAGE_SIZE,
|
202 |
-
step=32,
|
203 |
-
value=1024,
|
204 |
-
)
|
205 |
-
height = gr.Slider(
|
206 |
-
label="Height",
|
207 |
-
minimum=256,
|
208 |
-
maximum=MAX_IMAGE_SIZE,
|
209 |
-
step=32,
|
210 |
-
value=1024,
|
211 |
-
)
|
212 |
-
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
213 |
-
with gr.Row():
|
214 |
-
guidance_scale_base = gr.Slider(
|
215 |
-
label="Guidance scale for base",
|
216 |
-
minimum=1,
|
217 |
-
maximum=20,
|
218 |
-
step=0.1,
|
219 |
-
value=7.5,
|
220 |
-
)
|
221 |
-
num_inference_steps_base = gr.Slider(
|
222 |
-
label="Number of inference steps for base",
|
223 |
-
minimum=10,
|
224 |
-
maximum=100,
|
225 |
-
step=1,
|
226 |
-
value=60,
|
227 |
-
)
|
228 |
-
with gr.Row(visible=False) as refiner_params:
|
229 |
-
guidance_scale_refiner = gr.Slider(
|
230 |
-
label="Guidance scale for refiner",
|
231 |
-
minimum=1,
|
232 |
-
maximum=20,
|
233 |
-
step=0.1,
|
234 |
-
value=7.5,
|
235 |
-
)
|
236 |
-
num_inference_steps_refiner = gr.Slider(
|
237 |
-
label="Number of inference steps for refiner",
|
238 |
-
minimum=10,
|
239 |
-
maximum=100,
|
240 |
-
step=1,
|
241 |
-
value=30,
|
242 |
-
)
|
243 |
-
|
244 |
-
gr.Examples(
|
245 |
-
examples=examples,
|
246 |
-
inputs=prompt,
|
247 |
-
outputs=result,
|
248 |
-
fn=generate,
|
249 |
-
cache_examples=CACHE_EXAMPLES,
|
250 |
-
)
|
251 |
-
|
252 |
-
use_negative_prompt.change(
|
253 |
-
fn=lambda x: gr.update(visible=x),
|
254 |
-
inputs=use_negative_prompt,
|
255 |
-
outputs=negative_prompt,
|
256 |
-
queue=False,
|
257 |
-
api_name=False,
|
258 |
-
)
|
259 |
-
use_prompt_2.change(
|
260 |
-
fn=lambda x: gr.update(visible=x),
|
261 |
-
inputs=use_prompt_2,
|
262 |
-
outputs=prompt_2,
|
263 |
-
queue=False,
|
264 |
-
api_name=False,
|
265 |
-
)
|
266 |
-
use_negative_prompt_2.change(
|
267 |
-
fn=lambda x: gr.update(visible=x),
|
268 |
-
inputs=use_negative_prompt_2,
|
269 |
-
outputs=negative_prompt_2,
|
270 |
-
queue=False,
|
271 |
-
api_name=False,
|
272 |
-
)
|
273 |
-
apply_refiner.change(
|
274 |
-
fn=lambda x: gr.update(visible=x),
|
275 |
-
inputs=apply_refiner,
|
276 |
-
outputs=refiner_params,
|
277 |
-
queue=False,
|
278 |
-
api_name=False,
|
279 |
-
)
|
280 |
-
|
281 |
-
gr.on(
|
282 |
-
triggers=[
|
283 |
-
prompt.submit,
|
284 |
-
negative_prompt.submit,
|
285 |
-
prompt_2.submit,
|
286 |
-
negative_prompt_2.submit,
|
287 |
-
run_button.click,
|
288 |
-
],
|
289 |
-
fn=randomize_seed_fn,
|
290 |
-
inputs=[seed, randomize_seed],
|
291 |
-
outputs=seed,
|
292 |
-
queue=False,
|
293 |
-
api_name=False,
|
294 |
-
).then(
|
295 |
-
fn=generate,
|
296 |
-
inputs=[
|
297 |
-
prompt,
|
298 |
-
negative_prompt,
|
299 |
-
prompt_2,
|
300 |
-
negative_prompt_2,
|
301 |
-
use_negative_prompt,
|
302 |
-
use_prompt_2,
|
303 |
-
use_negative_prompt_2,
|
304 |
-
seed,
|
305 |
-
width,
|
306 |
-
height,
|
307 |
-
guidance_scale_base,
|
308 |
-
guidance_scale_refiner,
|
309 |
-
num_inference_steps_base,
|
310 |
-
num_inference_steps_refiner,
|
311 |
-
apply_refiner,
|
312 |
-
],
|
313 |
-
outputs=result,
|
314 |
-
api_name="run",
|
315 |
-
)
|
316 |
-
|
317 |
-
if __name__ == "__main__":
|
318 |
-
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|