Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
updating with web browsing + reasoning effort
Browse files
README.md
CHANGED
@@ -8,9 +8,7 @@ sdk_version: 5.36.2
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
|
12 |
-
- openai/gpt-oss-120b
|
13 |
-
short_description: 'gpt-oss-120b model running on AMD MI300 infrastructure.'
|
14 |
---
|
15 |
|
16 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: 'UPDATED: openai/gpt-oss-120b with web browsing & reasoning effort on AMD MI300X GPUs.'
|
|
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
-
import os,
|
|
|
2 |
from openai import OpenAI
|
3 |
from gateway import request_generation
|
4 |
from utils import LATEX_DELIMS
|
5 |
-
|
6 |
openai_api_key = os.getenv("API_KEY")
|
7 |
openai_api_base = os.getenv("API_ENDPOINT")
|
8 |
-
|
9 |
client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
|
10 |
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 1024))
|
11 |
CONCURRENCY_LIMIT = int(os.getenv("CONCURRENCY_LIMIT", 20))
|
@@ -13,26 +14,26 @@ QUEUE_SIZE = int(os.getenv("QUEUE_SIZE", CONCURRENCY_LIMIT * 4))
|
|
13 |
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
frequency_penalty, presence_penalty,
|
30 |
-
max_new_tokens):
|
31 |
|
|
|
32 |
if not message.strip():
|
33 |
yield "Please enter a prompt."
|
34 |
return
|
35 |
|
|
|
36 |
msgs = []
|
37 |
for h in history:
|
38 |
if isinstance(h, dict):
|
@@ -45,59 +46,92 @@ def generate(message, history,
|
|
45 |
logging.info(f"[User] {message}")
|
46 |
logging.info(f"[System] {system_prompt} | Temp={temperature}")
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
try:
|
52 |
-
for
|
53 |
api_key=openai_api_key, api_base=openai_api_base,
|
54 |
message=message, system_prompt=system_prompt,
|
55 |
-
model_name=
|
56 |
-
temperature=temperature,
|
57 |
-
|
58 |
-
presence_penalty=presence_penalty,
|
59 |
-
max_new_tokens=max_new_tokens,
|
60 |
):
|
61 |
-
if
|
|
|
|
|
|
|
|
|
62 |
continue
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
buffer = ""
|
70 |
-
yielded_once = True
|
71 |
continue
|
72 |
|
73 |
-
if
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
except Exception as e:
|
83 |
logging.exception("Stream failed")
|
84 |
yield f"❌ Error: {e}"
|
85 |
|
|
|
86 |
chatbot_ui = gr.ChatInterface(
|
87 |
fn=generate,
|
88 |
type="messages",
|
89 |
chatbot=gr.Chatbot(
|
90 |
label="OSS vLLM Chatbot",
|
91 |
type="messages",
|
92 |
-
scale=2,
|
93 |
height=600,
|
94 |
latex_delimiters=LATEX_DELIMS,
|
95 |
),
|
96 |
-
|
97 |
additional_inputs=[
|
98 |
gr.Textbox(label="System prompt", value="You are a helpful assistant.", lines=2),
|
99 |
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.7),
|
|
|
|
|
100 |
],
|
|
|
101 |
examples=[
|
102 |
["Explain the difference between supervised and unsupervised learning."],
|
103 |
["Summarize the plot of Inception in two sentences."],
|
@@ -106,11 +140,10 @@ chatbot_ui = gr.ChatInterface(
|
|
106 |
["Derive the gradient of softmax cross-entropy loss."],
|
107 |
["Explain why ∂/∂x xⁿ = n·xⁿ⁻¹ holds."],
|
108 |
],
|
109 |
-
# title="Open-source GPT-OSS-120B on AMD MI300X",
|
110 |
title=" GPT-OSS-120B on AMD MI300X",
|
111 |
description="This Space is an Alpha release that demonstrates gpt-oss-120b model running on AMD MI300 infrastructure. The space is built with Apache 2.0 License.",
|
112 |
)
|
|
|
113 |
if __name__ == "__main__":
|
114 |
chatbot_ui.queue(max_size=QUEUE_SIZE,
|
115 |
-
default_concurrency_limit=CONCURRENCY_LIMIT).launch()
|
116 |
-
|
|
|
1 |
+
import os, logging, gradio as gr
|
2 |
+
from pydoc import html
|
3 |
from openai import OpenAI
|
4 |
from gateway import request_generation
|
5 |
from utils import LATEX_DELIMS
|
6 |
+
|
7 |
openai_api_key = os.getenv("API_KEY")
|
8 |
openai_api_base = os.getenv("API_ENDPOINT")
|
9 |
+
model_name = os.getenv("MODEL_NAME")
|
10 |
client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
|
11 |
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 1024))
|
12 |
CONCURRENCY_LIMIT = int(os.getenv("CONCURRENCY_LIMIT", 20))
|
|
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
+
def format_final(analysis_text: str, visible_text: str) -> str:
|
18 |
+
"""Render final message with collapsible analysis + normal Markdown answer."""
|
19 |
+
reasoning_safe = html.escape((analysis_text or "").strip())
|
20 |
+
response = (visible_text or "").strip()
|
21 |
+
# Collapsible analysis, normal markdown answer
|
22 |
+
return (
|
23 |
+
"<details><summary><strong>🤔 Analysis</strong></summary>\n"
|
24 |
+
"<pre style='white-space:pre-wrap;'>"
|
25 |
+
f"{reasoning_safe}"
|
26 |
+
"</pre>\n</details>\n\n"
|
27 |
+
"**💬 Response:**\n\n"
|
28 |
+
f"{response}"
|
29 |
+
)
|
|
|
|
|
30 |
|
31 |
+
def generate(message, history, system_prompt, temperature, reasoning_effort, enable_browsing, max_new_tokens):
|
32 |
if not message.strip():
|
33 |
yield "Please enter a prompt."
|
34 |
return
|
35 |
|
36 |
+
# Flatten gradio history
|
37 |
msgs = []
|
38 |
for h in history:
|
39 |
if isinstance(h, dict):
|
|
|
46 |
logging.info(f"[User] {message}")
|
47 |
logging.info(f"[System] {system_prompt} | Temp={temperature}")
|
48 |
|
49 |
+
tools = [{"type": "web_search_preview"}] if enable_browsing else None
|
50 |
+
tool_choice = "auto" if enable_browsing else None
|
51 |
+
|
52 |
+
in_analysis = False
|
53 |
+
in_visible = False
|
54 |
+
|
55 |
+
raw_analysis = ""
|
56 |
+
raw_visible = ""
|
57 |
+
|
58 |
+
raw_started = False
|
59 |
+
last_flush_len = 0
|
60 |
+
|
61 |
+
def make_raw_preview() -> str:
|
62 |
+
return (
|
63 |
+
"```text\n"
|
64 |
+
"Analysis (live):\n"
|
65 |
+
f"{raw_analysis}\n\n"
|
66 |
+
"Response (draft):\n"
|
67 |
+
f"{raw_visible}\n"
|
68 |
+
"```"
|
69 |
+
)
|
70 |
|
71 |
try:
|
72 |
+
for chunk in request_generation(
|
73 |
api_key=openai_api_key, api_base=openai_api_base,
|
74 |
message=message, system_prompt=system_prompt,
|
75 |
+
model_name=model_name, chat_history=msgs,
|
76 |
+
temperature=temperature, reasoning_effort=reasoning_effort,
|
77 |
+
max_new_tokens=max_new_tokens, tools=tools, tool_choice=tool_choice,
|
|
|
|
|
78 |
):
|
79 |
+
if chunk == "analysis":
|
80 |
+
in_analysis, in_visible = True, False
|
81 |
+
if not raw_started:
|
82 |
+
raw_started = True
|
83 |
+
yield make_raw_preview()
|
84 |
continue
|
85 |
|
86 |
+
if chunk == "assistantfinal":
|
87 |
+
in_analysis, in_visible = False, True
|
88 |
+
if not raw_started:
|
89 |
+
raw_started = True
|
90 |
+
yield make_raw_preview()
|
|
|
|
|
91 |
continue
|
92 |
|
93 |
+
if in_analysis:
|
94 |
+
raw_analysis += chunk
|
95 |
+
elif in_visible:
|
96 |
+
raw_visible += chunk
|
97 |
+
else:
|
98 |
+
raw_visible += chunk
|
99 |
+
|
100 |
+
total_len = len(raw_analysis) + len(raw_visible)
|
101 |
+
if total_len - last_flush_len >= 120 or "\n" in chunk:
|
102 |
+
last_flush_len = total_len
|
103 |
+
yield make_raw_preview()
|
104 |
+
|
105 |
+
final_markdown = format_final(raw_analysis, raw_visible)
|
106 |
|
107 |
+
if final_markdown.count("$") % 2:
|
108 |
+
final_markdown += "$"
|
109 |
+
|
110 |
+
# This replaces the raw preview in-place with the pretty final message
|
111 |
+
yield final_markdown
|
112 |
|
113 |
except Exception as e:
|
114 |
logging.exception("Stream failed")
|
115 |
yield f"❌ Error: {e}"
|
116 |
|
117 |
+
|
118 |
chatbot_ui = gr.ChatInterface(
|
119 |
fn=generate,
|
120 |
type="messages",
|
121 |
chatbot=gr.Chatbot(
|
122 |
label="OSS vLLM Chatbot",
|
123 |
type="messages",
|
|
|
124 |
height=600,
|
125 |
latex_delimiters=LATEX_DELIMS,
|
126 |
),
|
127 |
+
additional_inputs_accordion=gr.Accordion("⚙️ Settings", open=True),
|
128 |
additional_inputs=[
|
129 |
gr.Textbox(label="System prompt", value="You are a helpful assistant.", lines=2),
|
130 |
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.7),
|
131 |
+
gr.Radio(label="Reasoning Effort", choices=["low","medium","high"], value="medium"),
|
132 |
+
gr.Checkbox(label="Enable web browsing (web_search_preview)", value=False),
|
133 |
],
|
134 |
+
stop_btn=True,
|
135 |
examples=[
|
136 |
["Explain the difference between supervised and unsupervised learning."],
|
137 |
["Summarize the plot of Inception in two sentences."],
|
|
|
140 |
["Derive the gradient of softmax cross-entropy loss."],
|
141 |
["Explain why ∂/∂x xⁿ = n·xⁿ⁻¹ holds."],
|
142 |
],
|
|
|
143 |
title=" GPT-OSS-120B on AMD MI300X",
|
144 |
description="This Space is an Alpha release that demonstrates gpt-oss-120b model running on AMD MI300 infrastructure. The space is built with Apache 2.0 License.",
|
145 |
)
|
146 |
+
|
147 |
if __name__ == "__main__":
|
148 |
chatbot_ui.queue(max_size=QUEUE_SIZE,
|
149 |
+
default_concurrency_limit=CONCURRENCY_LIMIT).launch()
|
|
gateway.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
import logging
|
2 |
-
from openai import OpenAI
|
3 |
from typing import List, Generator, Optional
|
|
|
4 |
|
5 |
-
logging.basicConfig(level=logging.INFO)
|
6 |
|
7 |
def request_generation(
|
8 |
api_key: str,
|
@@ -12,54 +11,118 @@ def request_generation(
|
|
12 |
model_name: str,
|
13 |
chat_history: Optional[List[dict]] = None,
|
14 |
temperature: float = 0.3,
|
15 |
-
frequency_penalty: float = 0.0,
|
16 |
-
presence_penalty: float = 0.0,
|
17 |
max_new_tokens: int = 1024,
|
|
|
18 |
tools: Optional[List[dict]] = None,
|
19 |
tool_choice: Optional[str] = None,
|
20 |
) -> Generator[str, None, None]:
|
21 |
"""
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
"""
|
25 |
client = OpenAI(api_key=api_key, base_url=api_base)
|
26 |
|
27 |
-
|
28 |
if chat_history:
|
29 |
-
|
30 |
-
|
31 |
|
32 |
request_args = {
|
33 |
"model": model_name,
|
34 |
-
"
|
|
|
35 |
"temperature": temperature,
|
36 |
-
"
|
37 |
-
"
|
38 |
-
|
|
|
|
|
|
|
39 |
"stream": True,
|
40 |
}
|
41 |
-
|
42 |
if tools:
|
43 |
request_args["tools"] = tools
|
44 |
if tool_choice:
|
45 |
request_args["tool_choice"] = tool_choice
|
46 |
|
47 |
-
|
|
|
48 |
|
49 |
try:
|
50 |
-
stream = client.
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
buffer = ""
|
54 |
|
55 |
-
for
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
if buffer:
|
65 |
yield buffer
|
|
|
1 |
+
import json, logging
|
|
|
2 |
from typing import List, Generator, Optional
|
3 |
+
from openai import OpenAI
|
4 |
|
|
|
5 |
|
6 |
def request_generation(
|
7 |
api_key: str,
|
|
|
11 |
model_name: str,
|
12 |
chat_history: Optional[List[dict]] = None,
|
13 |
temperature: float = 0.3,
|
|
|
|
|
14 |
max_new_tokens: int = 1024,
|
15 |
+
reasoning_effort: str = "off",
|
16 |
tools: Optional[List[dict]] = None,
|
17 |
tool_choice: Optional[str] = None,
|
18 |
) -> Generator[str, None, None]:
|
19 |
"""
|
20 |
+
Streams Responses API events. Emits:
|
21 |
+
- "analysis" sentinel once, then raw reasoning deltas
|
22 |
+
- "assistantfinal" sentinel once, then visible output deltas
|
23 |
+
If no visible deltas, emits a tool-call fallback message.
|
24 |
"""
|
25 |
client = OpenAI(api_key=api_key, base_url=api_base)
|
26 |
|
27 |
+
input_messages: List[dict] = []
|
28 |
if chat_history:
|
29 |
+
input_messages.extend(m for m in chat_history if m.get("role") != "system")
|
30 |
+
input_messages.append({"role": "user", "content": message})
|
31 |
|
32 |
request_args = {
|
33 |
"model": model_name,
|
34 |
+
"input": input_messages,
|
35 |
+
"instructions": system_prompt,
|
36 |
"temperature": temperature,
|
37 |
+
"max_output_tokens": max_new_tokens,
|
38 |
+
"reasoning": {
|
39 |
+
"effort": reasoning_effort,
|
40 |
+
"generate_summary": "detailed",
|
41 |
+
"summary": "detailed",
|
42 |
+
},
|
43 |
"stream": True,
|
44 |
}
|
|
|
45 |
if tools:
|
46 |
request_args["tools"] = tools
|
47 |
if tool_choice:
|
48 |
request_args["tool_choice"] = tool_choice
|
49 |
|
50 |
+
|
51 |
+
raw_reasoning, raw_visible = [], []
|
52 |
|
53 |
try:
|
54 |
+
stream = client.responses.create(**request_args)
|
55 |
|
56 |
+
reasoning_started = False
|
57 |
+
reasoning_closed = False
|
58 |
+
saw_visible_output = False
|
59 |
+
last_tool_name = None
|
60 |
+
last_tool_args = None
|
61 |
buffer = ""
|
62 |
|
63 |
+
for event in stream:
|
64 |
+
et = getattr(event, "type", "")
|
65 |
+
|
66 |
+
if et == "response.reasoning_text.delta":
|
67 |
+
if not reasoning_started:
|
68 |
+
yield "analysis"
|
69 |
+
reasoning_started = True
|
70 |
+
rdelta = getattr(event, "delta", "") or ""
|
71 |
+
if rdelta:
|
72 |
+
raw_reasoning.append(rdelta)
|
73 |
+
yield rdelta
|
74 |
+
continue
|
75 |
+
|
76 |
+
if et == "response.output_text.delta":
|
77 |
+
if reasoning_started and not reasoning_closed:
|
78 |
+
yield "assistantfinal"
|
79 |
+
reasoning_closed = True
|
80 |
+
|
81 |
+
saw_visible_output = True
|
82 |
+
delta = getattr(event, "delta", "") or ""
|
83 |
+
raw_visible.append(delta)
|
84 |
+
buffer += delta
|
85 |
+
|
86 |
+
if "\n" in buffer or len(buffer) > 150:
|
87 |
+
yield buffer
|
88 |
+
buffer = ""
|
89 |
+
continue
|
90 |
+
|
91 |
+
if et.startswith("response.tool") or et.startswith("response.function_call"):
|
92 |
+
name = getattr(event, "name", None)
|
93 |
+
args = getattr(event, "arguments", None)
|
94 |
+
if args is None:
|
95 |
+
args = getattr(event, "args", None) or getattr(event, "delta", None) or getattr(event, "data", None)
|
96 |
+
if name:
|
97 |
+
last_tool_name = name
|
98 |
+
if args is not None:
|
99 |
+
last_tool_args = args
|
100 |
+
continue
|
101 |
+
|
102 |
+
if et in ("response.completed", "response.error"):
|
103 |
+
if buffer:
|
104 |
+
yield buffer
|
105 |
+
buffer = ""
|
106 |
+
|
107 |
+
if reasoning_started and not reasoning_closed:
|
108 |
+
yield "assistantfinal"
|
109 |
+
reasoning_closed = True
|
110 |
+
|
111 |
+
if not saw_visible_output:
|
112 |
+
msg = "I attempted to call a tool, but tools aren't executed in this environment, so no final answer was produced."
|
113 |
+
if last_tool_name:
|
114 |
+
try:
|
115 |
+
args_text = json.dumps(last_tool_args, ensure_ascii=False, default=str)
|
116 |
+
except Exception:
|
117 |
+
args_text = str(last_tool_args)
|
118 |
+
msg += f"\n\n• Tool requested: **{last_tool_name}**\n• Arguments: `{args_text}`"
|
119 |
+
yield msg
|
120 |
|
121 |
+
if et == "response.error":
|
122 |
+
err = getattr(event, "error", None)
|
123 |
+
emsg = getattr(err, "message", "") if err else "Unknown error"
|
124 |
+
yield f"Error: {emsg}"
|
125 |
+
break
|
126 |
|
127 |
if buffer:
|
128 |
yield buffer
|
utils.py
CHANGED
@@ -4,9 +4,6 @@
|
|
4 |
# ----------------------------------------------------------------------
|
5 |
|
6 |
LATEX_DELIMS = [
|
7 |
-
{"left": "
|
8 |
-
{"left": "
|
9 |
-
{"left": "\\[", "right": "\\]", "display": True},
|
10 |
-
{"left": "\\(", "right": "\\)", "display": False},
|
11 |
]
|
12 |
-
|
|
|
4 |
# ----------------------------------------------------------------------
|
5 |
|
6 |
LATEX_DELIMS = [
|
7 |
+
{"left": "\\[", "right": "\\]", "display": True},
|
8 |
+
{"left": "\\(", "right": "\\)", "display": False},
|
|
|
|
|
9 |
]
|
|