Spaces:
Running
Running
Amamrnaf
commited on
Commit
·
6e805b9
1
Parent(s):
2cf3347
app done ?
Browse files- app.py +158 -13
- dataSchema.py +12 -0
- functions.py +48 -0
app.py
CHANGED
@@ -1,25 +1,170 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def process_pdf(file, option):
|
5 |
if file is None:
|
6 |
return "Please upload a PDF file."
|
7 |
|
8 |
try:
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
|
16 |
# Process based on the selected option
|
17 |
-
if option == "
|
18 |
-
|
19 |
-
|
20 |
-
return
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
except Exception as e:
|
24 |
return f"An error occurred: {e}"
|
25 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import pymupdf # PyMuPDF for handling PDF files
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
from functions import get_image_informations
|
6 |
+
from dataSchema import *
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def Noc_timeSheet_pdf_to_img(pdf_path,output_path,dpi: int = 300, quality: int = 95):
|
11 |
+
pdf_document = pymupdf.open(pdf_path)
|
12 |
+
|
13 |
+
# Get the first page of the PDF
|
14 |
+
page = pdf_document.load_page(0) # 0 is the first page
|
15 |
+
|
16 |
+
# Convert the page to a pixmap (image)
|
17 |
+
pix = page.get_pixmap(dpi=dpi)
|
18 |
+
|
19 |
+
|
20 |
+
# Convert the pixmap to a PIL Image and save as JPG
|
21 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
22 |
+
|
23 |
+
width, height = image.size
|
24 |
+
start_y_total_table = int(height* 0.42)
|
25 |
+
end_y_first_table = int(height*0.30)
|
26 |
+
|
27 |
+
croped1 = image.crop((0, 0, width//2, end_y_first_table))
|
28 |
+
croped2 = image.crop((0, start_y_total_table, width//2, height))
|
29 |
+
upper_width, upper_height = croped1.size
|
30 |
+
lower_width, lower_height = croped2.size
|
31 |
+
combined_image = Image.new('RGB', (upper_width, upper_height + lower_height))
|
32 |
+
|
33 |
+
# Paste the upper image (croped1) on top
|
34 |
+
combined_image.paste(croped1, (0, 0))
|
35 |
+
|
36 |
+
# Paste the lower image (croped2) below the upper image
|
37 |
+
combined_image.paste(croped2, (0, upper_height))
|
38 |
+
|
39 |
+
# Save the combined image
|
40 |
+
combined_image.save(output_path, "JPEG",quality=quality)
|
41 |
+
|
42 |
+
#-----------S3------------ need S3_BUCKET,S3_REGION,S3_URL
|
43 |
+
# import boto3
|
44 |
+
|
45 |
+
# s3_client = boto3.client('s3', region_name=S3_REGION)
|
46 |
+
# s3_client.upload_file(output_path, S3_BUCKET, key)
|
47 |
+
|
48 |
+
# file_url = f"{S3_URL}/{key}"
|
49 |
+
|
50 |
+
# return file_url
|
51 |
+
|
52 |
+
# return output_path
|
53 |
+
|
54 |
+
def Clauses_in_invoice(pdf_path: str) -> bool:
|
55 |
+
"""
|
56 |
+
Extract text from the last page of a PDF.
|
57 |
+
"""
|
58 |
+
pdf_document = pymupdf.open(pdf_path)
|
59 |
+
total_pages = pdf_document.page_count
|
60 |
+
last_page = pdf_document.load_page(total_pages - 1)
|
61 |
+
text = last_page.get_text()
|
62 |
+
pdf_document.close()
|
63 |
+
if "clauses" in text.lower():
|
64 |
+
return True
|
65 |
+
else:
|
66 |
+
return False
|
67 |
+
|
68 |
+
def Noc_invoice_pdf_to_img(pdf_path: str, folder_path: str, dpi: int = 300, quality: int = 95):
|
69 |
+
|
70 |
+
pdf_document = pymupdf.open(pdf_path)
|
71 |
+
folder_path = folder_path.rstrip(os.sep)
|
72 |
+
os.makedirs(folder_path, exist_ok=True)
|
73 |
+
|
74 |
+
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
75 |
+
total_pages = pdf_document.page_count
|
76 |
+
image_paths=[]
|
77 |
+
for page_num in range(total_pages):
|
78 |
+
page = pdf_document.load_page(page_num)
|
79 |
+
pix = page.get_pixmap(dpi=dpi)
|
80 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
81 |
+
|
82 |
+
output_path = os.path.join(folder_path, f"{pdf_name}_page_{page_num + 1}.jpg")
|
83 |
+
image.save(output_path, "JPEG", quality=quality)
|
84 |
+
|
85 |
+
#-----------S3------------ need S3_BUCKET,S3_REGION,S3_URL
|
86 |
+
# import boto3
|
87 |
+
|
88 |
+
# s3_client = boto3.client('s3', region_name=S3_REGION)
|
89 |
+
# s3_client.upload_file(output_path, S3_BUCKET, key)
|
90 |
+
|
91 |
+
# file_url = f"{S3_URL}/{key}"
|
92 |
+
|
93 |
+
# append the s3 links
|
94 |
+
# image_paths.append(file_url)
|
95 |
+
|
96 |
+
|
97 |
+
image_paths.append(output_path)
|
98 |
+
|
99 |
+
pdf_document.close()
|
100 |
+
return image_paths
|
101 |
+
|
102 |
+
def delete_images(image_paths):
|
103 |
+
# Iterate through the list of image paths
|
104 |
+
for image_path in image_paths:
|
105 |
+
try:
|
106 |
+
# Check if the file exists before attempting to delete
|
107 |
+
if os.path.exists(image_path):
|
108 |
+
os.remove(image_path)
|
109 |
+
print(f"Deleted: {image_path}")
|
110 |
+
else:
|
111 |
+
print(f"File not found: {image_path}")
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error deleting {image_path}: {e}")
|
114 |
+
|
115 |
+
def noc_invoice_extraction(pdf_path: str,folder_path):
|
116 |
+
|
117 |
+
image_paths=Noc_invoice_pdf_to_img(pdf_path,folder_path)
|
118 |
+
data = {}
|
119 |
+
result = get_image_informations(image_paths[0],invoice_first_page_prompt,Noc_PurchaseOrder_information_parser)
|
120 |
+
data.update(result)
|
121 |
+
result = get_image_informations(image_paths[1],invoice_item_page1_prompt,Noc_PurchaseOrder_item1_parser)
|
122 |
+
data.update(result)
|
123 |
+
if Clauses_in_invoice(pdf_path):
|
124 |
+
for pic in range(len(image_paths)-4):
|
125 |
+
new_item = get_image_informations(image_paths[pic+2],invoice_item_pages_prompt,Noc_PurchaseOrder_items_parser)
|
126 |
+
for item in new_item["items"]:
|
127 |
+
data["items"].append(item)
|
128 |
+
result = get_image_informations(image_paths[-2],invoice_total_page_prompt,Noc_PurchaseOrder_total_parser)
|
129 |
+
data.update(result)
|
130 |
+
result = get_image_informations(image_paths[-1],invoice_clauses_page_prompt,Noc_PurchaseOrder_clauses_parser)
|
131 |
+
data.update(result)
|
132 |
+
delete_images(image_paths)
|
133 |
+
return data
|
134 |
+
else:
|
135 |
+
for pic in range(len(image_paths)-3):
|
136 |
+
new_item = get_image_informations(image_paths[pic+2],invoice_item_pages_prompt,Noc_PurchaseOrder_items_parser)
|
137 |
+
for item in new_item["items"]:
|
138 |
+
data["items"].append(item)
|
139 |
+
result = get_image_informations(image_paths[-2],invoice_total_page_prompt,Noc_PurchaseOrder_total_parser)
|
140 |
+
data.update(result)
|
141 |
+
delete_images(image_paths)
|
142 |
+
return data
|
143 |
+
|
144 |
|
145 |
def process_pdf(file, option):
|
146 |
if file is None:
|
147 |
return "Please upload a PDF file."
|
148 |
|
149 |
try:
|
150 |
+
|
151 |
+
save_dir = "uploaded_files"
|
152 |
+
os.makedirs(save_dir, exist_ok=True) # Create the directory if it doesn't exist
|
153 |
+
|
154 |
+
# Save the uploaded file
|
155 |
+
file_path = os.path.join(save_dir, file.name)
|
156 |
+
with open(file_path, "wb") as f:
|
157 |
+
f.write(file.read())
|
158 |
|
159 |
# Process based on the selected option
|
160 |
+
if option == "Noc_timesheet_resdiential":
|
161 |
+
Noc_timeSheet_pdf_to_img(file_path,"output.jpg")
|
162 |
+
result = get_image_informations("output.jpg",Noc_Res_timesheet_prompt,Noc_Res_timeSheet_parser)
|
163 |
+
return result
|
164 |
+
# elif option == "Option 2":
|
165 |
+
# return f"Option 2 selected. Extracted text:\n{text[:500]}..." # Truncated for brevity
|
166 |
+
# else:
|
167 |
+
# return "Invalid option selected."
|
168 |
except Exception as e:
|
169 |
return f"An error occurred: {e}"
|
170 |
|
dataSchema.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from pydantic import BaseModel, Field
|
2 |
from typing import Optional,List
|
|
|
3 |
|
4 |
class Noc_Residential_TimeSheetInformation(BaseModel):
|
5 |
"""Details of a timesheet entry."""
|
@@ -88,6 +89,7 @@ class Noc_PurchaseOrderInformation(BaseModel):
|
|
88 |
your_reference: Optional[str] = Field(None, description="under Your reference title.")
|
89 |
incoterms: Optional[str] = Field(None, description="Incoterms applicable to the order.")
|
90 |
total_value_of_order: str = Field(..., description="Total value of the purchase order.")
|
|
|
91 |
signature_released_by: str = Field(None, description="Name of the person who released the purchase order.")
|
92 |
signature_date: Optional[str] = Field(None, description="Date the order was signed.")
|
93 |
|
@@ -155,6 +157,7 @@ Extract the following details from the provided purchase order document:
|
|
155 |
- Your Reference: Reference specified under the "Your Reference" section (if present).
|
156 |
- Incoterms: Any applicable incoterms mentioned in the document (e.g., FOB, CIF).
|
157 |
- Total Value of the Order: The total monetary value of the purchase order (include currency).
|
|
|
158 |
- Signature Released By: The name of the person who authorized or released the purchase order.
|
159 |
- Signature Date: The date when the order was signed (format: DD/MM/YYYY).
|
160 |
"""
|
@@ -199,3 +202,12 @@ extract from the document:
|
|
199 |
|
200 |
invoice_clauses_page_prompt = """
|
201 |
extract from the document the clauses """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from pydantic import BaseModel, Field
|
2 |
from typing import Optional,List
|
3 |
+
from langchain_core.output_parsers import JsonOutputParser
|
4 |
|
5 |
class Noc_Residential_TimeSheetInformation(BaseModel):
|
6 |
"""Details of a timesheet entry."""
|
|
|
89 |
your_reference: Optional[str] = Field(None, description="under Your reference title.")
|
90 |
incoterms: Optional[str] = Field(None, description="Incoterms applicable to the order.")
|
91 |
total_value_of_order: str = Field(..., description="Total value of the purchase order.")
|
92 |
+
signed: bool = Field(..., description="Whether the document has been signed or not.")
|
93 |
signature_released_by: str = Field(None, description="Name of the person who released the purchase order.")
|
94 |
signature_date: Optional[str] = Field(None, description="Date the order was signed.")
|
95 |
|
|
|
157 |
- Your Reference: Reference specified under the "Your Reference" section (if present).
|
158 |
- Incoterms: Any applicable incoterms mentioned in the document (e.g., FOB, CIF).
|
159 |
- Total Value of the Order: The total monetary value of the purchase order (include currency).
|
160 |
+
- signed: Whether the document has been signed or not.
|
161 |
- Signature Released By: The name of the person who authorized or released the purchase order.
|
162 |
- Signature Date: The date when the order was signed (format: DD/MM/YYYY).
|
163 |
"""
|
|
|
202 |
|
203 |
invoice_clauses_page_prompt = """
|
204 |
extract from the document the clauses """
|
205 |
+
|
206 |
+
# CHOOSING PARSER DEPENDING ON THE TYPE OF DOCUMENT
|
207 |
+
Noc_Res_timeSheet_parser = JsonOutputParser(pydantic_object=Noc_Residential_TimeSheetInformation)
|
208 |
+
Noc_Rot_timeSheet_parser = JsonOutputParser(pydantic_object=Noc_Rotational_TimeSheetInformation)
|
209 |
+
Noc_PurchaseOrder_information_parser = JsonOutputParser(pydantic_object=Noc_PurchaseOrderInformation)
|
210 |
+
Noc_PurchaseOrder_item1_parser = JsonOutputParser(pydantic_object=Noc_Document_Information)
|
211 |
+
Noc_PurchaseOrder_items_parser = JsonOutputParser(pydantic_object=Noc_items)
|
212 |
+
Noc_PurchaseOrder_total_parser = JsonOutputParser(pydantic_object=Noc_total)
|
213 |
+
Noc_PurchaseOrder_clauses_parser = JsonOutputParser(pydantic_object=Noc_Clauses)
|
functions.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import TransformChain
|
2 |
+
from langchain_core.messages import HumanMessage
|
3 |
+
from langchain_openai import ChatOpenAI
|
4 |
+
from langchain import globals
|
5 |
+
from langchain_core.runnables import chain
|
6 |
+
import base64
|
7 |
+
from typing import Dict,List,Union
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def load_image(inputs: dict) -> dict:
|
12 |
+
"""Load image from file and encode it as base64."""
|
13 |
+
image_path = inputs["image_path"]
|
14 |
+
|
15 |
+
def encode_image(image_path):
|
16 |
+
with open(image_path, "rb") as image_file:
|
17 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
18 |
+
image_base64 = encode_image(image_path)
|
19 |
+
return {"image": image_base64}
|
20 |
+
|
21 |
+
load_image_chain = TransformChain(
|
22 |
+
input_variables=["image_path"],
|
23 |
+
output_variables=["image"],
|
24 |
+
transform=load_image
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
@chain
|
29 |
+
def image_model(inputs: dict) -> Union[str, List[str], dict]:
|
30 |
+
"""Invoke model with image and prompt."""
|
31 |
+
model = ChatOpenAI(temperature=0.1, model="gpt-4o", max_tokens=1024)
|
32 |
+
parser = inputs["parser"]
|
33 |
+
msg = model.invoke(
|
34 |
+
[HumanMessage(
|
35 |
+
content=[
|
36 |
+
{"type": "text", "text": inputs["prompt"]},
|
37 |
+
{"type": "text", "text": parser.get_format_instructions()},
|
38 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{inputs['image']}"}},
|
39 |
+
])]
|
40 |
+
)
|
41 |
+
return msg.content
|
42 |
+
|
43 |
+
def get_image_informations(image_path: str,prompt,parser) -> dict:
|
44 |
+
vision_chain = load_image_chain | image_model | parser
|
45 |
+
return vision_chain.invoke({'image_path': f'{image_path}',
|
46 |
+
'prompt': prompt,
|
47 |
+
'parser': parser
|
48 |
+
})
|