Spaces:
Sleeping
Sleeping
Amamrnaf
`Added new parsers and updated existing ones for Noc timesheet and invoice extraction`
df646cb
import gradio as gr #type: ignore | |
import pymupdf #type: ignore | |
from PIL import Image | |
import os | |
from functions import get_image_informations | |
from dataSchema import * | |
# import shutil | |
def Noc_timeSheet_pdf_to_img(pdf_path,dpi: int = 300, quality: int = 95): | |
pdf_document = pymupdf.open(pdf_path) | |
output_path="output.jpg" | |
# Get the first page of the PDF | |
page = pdf_document.load_page(0) # 0 is the first page | |
# Convert the page to a pixmap (image) | |
pix = page.get_pixmap(dpi=dpi) | |
# Convert the pixmap to a PIL Image and save as JPG | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
width, height = image.size | |
start_y_total_table = int(height * 0.42) | |
end_y_first_table = int(height * 0.30) | |
croped1 = image.crop((0, 0, width, end_y_first_table)) | |
croped2 = image.crop((0, start_y_total_table, width, height)) | |
upper_width, upper_height = croped1.size | |
lower_width, lower_height = croped2.size | |
combined_image = Image.new('RGB', (upper_width, upper_height + lower_height)) | |
# Paste the upper image (croped1) on top | |
combined_image.paste(croped1, (0, 0)) | |
# Paste the lower image (croped2) below the upper image | |
combined_image.paste(croped2, (0, upper_height)) | |
# Save the combined image | |
combined_image.save(output_path, "JPEG", quality=quality) | |
def Clauses_in_invoice(pdf_path: str) -> bool: | |
""" | |
Extract text from the last page of a PDF. | |
""" | |
try: | |
pdf_document = pymupdf.open(pdf_path) | |
total_pages = pdf_document.page_count | |
if total_pages < 2: | |
print("The PDF has fewer than 2 pages.") | |
return False | |
last_page = pdf_document.load_page(total_pages - 1) | |
text = last_page.get_text() | |
last_page = text.lower() | |
if "clauses" in last_page: | |
return True | |
else: | |
return False | |
except Exception as e: | |
print(f"error :{e}") | |
return False | |
finally: | |
# Ensure the PDF document is closed | |
if 'pdf_document' in locals(): | |
pdf_document.close() | |
def Clauses_in_invoice_2nd_version(pdf_path: str) -> bool: | |
""" | |
Extract text from the last page of a PDF. | |
""" | |
try: | |
pdf_document = pymupdf.open(pdf_path) | |
total_pages = pdf_document.page_count | |
if total_pages < 2: | |
print("The PDF has fewer than 2 pages.") | |
return False | |
second_to_last_page = pdf_document.load_page(total_pages - 2) | |
text = second_to_last_page.get_text() | |
if "clauses" in text.lower(): | |
return True | |
else: | |
return False | |
except Exception as e: | |
print(f"error :{e}") | |
return False | |
finally: | |
# Ensure the PDF document is closed | |
if 'pdf_document' in locals(): | |
pdf_document.close() | |
def Noc_invoice_pdf_to_img(pdf_path: str, folder_path: str, dpi: int = 300, quality: int = 95): | |
pdf_document = pymupdf.open(pdf_path) | |
folder_path = folder_path.rstrip(os.sep) | |
os.makedirs(folder_path, exist_ok=True) | |
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0] | |
total_pages = pdf_document.page_count | |
image_paths = [] | |
for page_num in range(total_pages): | |
page = pdf_document.load_page(page_num) | |
pix = page.get_pixmap(dpi=dpi) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
output_path = os.path.join(folder_path, f"{pdf_name}_page_{page_num + 1}.jpg") | |
image.save(output_path, "JPEG", quality=quality) | |
image_paths.append(output_path) | |
pdf_document.close() | |
return image_paths | |
def delete_images(image_paths): | |
# Iterate through the list of image paths | |
for image_path in image_paths: | |
try: | |
# Check if the file exists before attempting to delete | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
print(f"Deleted: {image_path}") | |
else: | |
print(f"File not found: {image_path}") | |
except Exception as e: | |
print(f"Error deleting {image_path}: {e}") | |
def noc_invoice_extraction(pdf_path: str, folder_path): | |
image_paths = Noc_invoice_pdf_to_img(pdf_path, folder_path) | |
data = {} | |
result = get_image_informations(image_paths[0], invoice_first_page_prompt, Noc_PurchaseOrder_information_parser) | |
data.update(result) | |
result = get_image_informations(image_paths[1], invoice_item_page1_prompt, Noc_PurchaseOrder_item1_parser) | |
data.update(result) | |
if Clauses_in_invoice(pdf_path): | |
for pic in range(len(image_paths) - 4): | |
new_item = get_image_informations(image_paths[pic + 2], invoice_item_pages_prompt, Noc_PurchaseOrder_items_parser) | |
for item in new_item["items"]: | |
data["items"].append(item) | |
result = get_image_informations(image_paths[-2], invoice_total_page_prompt, Noc_PurchaseOrder_total_parser) | |
data.update(result) | |
result = get_image_informations(image_paths[-1], invoice_clauses_page_prompt, Noc_PurchaseOrder_clauses_parser) | |
data.update(result) | |
delete_images(image_paths) | |
return data | |
else: | |
for pic in range(len(image_paths) - 3): | |
new_item = get_image_informations(image_paths[pic + 2], invoice_item_pages_prompt, Noc_PurchaseOrder_items_parser) | |
for item in new_item["items"]: | |
data["items"].append(item) | |
result = get_image_informations(image_paths[-1], invoice_total_page_prompt, Noc_PurchaseOrder_total_parser) | |
data.update(result) | |
delete_images(image_paths) | |
return data | |
def pdf_to_img(pdf_path, dpi: float = 300, quality: float = 95): | |
pdf_document = pymupdf.open(pdf_path) | |
page = pdf_document.load_page(0) # Load the first page | |
output_path = "output.jpg" | |
# Convert the page to a pixmap (image) | |
pix = page.get_pixmap(dpi=dpi) | |
# Convert the pixmap to a PIL Image | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
image.save(output_path, "JPEG",quality=quality) | |
def process_file(file, option): | |
if file is None: | |
return "Please upload a PDF or image file." | |
try: | |
save_dir = "uploaded_files" | |
os.makedirs(save_dir, exist_ok=True) # Create the directory if it doesn't exist | |
file_path = file.name | |
file_extension = os.path.splitext(file_path)[1].lower() | |
print(file_extension) | |
if file_extension in ['.pdf']: | |
# Process PDF files | |
if option == "Noc_timesheet_residential_old": | |
print(file_path) | |
Noc_timeSheet_pdf_to_img(file_path) | |
print("here 2") | |
result = get_image_informations("output.jpg", Noc_Res_timesheet_prompt, Noc_Res_timeSheet_parser) | |
return result | |
elif option == "Noc_timesheet_rotational_old": | |
Noc_timeSheet_pdf_to_img(file_path) | |
result = get_image_informations("output.jpg", Noc_Rot_timesheet_prompt, Noc_Rot_timeSheet_parser) | |
return result | |
elif option == "Noc_PO": | |
result = noc_invoice_extraction(file_path, save_dir) | |
return result | |
elif option =="Noc_timesheet_new": | |
pdf_to_img(file_path) | |
result = get_image_informations("output.jpg", Noc_timesheet_prompt, Noc_timesheet_parser_v1) | |
return result | |
elif option == "Noc_invoice": | |
pdf_to_img(file_path) | |
result = get_image_informations("output.jpg", Noc_invoice_prompt, Noc_invoice_parser_v1) | |
return result | |
elif file_extension in ['.jpg', '.jpeg', '.png']: | |
# Process image files directly | |
if option == "Noc_timesheet_residential_old": | |
result = get_image_informations(file_path, Noc_Res_timesheet_prompt, Noc_Res_timeSheet_parser) | |
return result | |
elif option == "Noc_timesheet_rotational_old": | |
result = get_image_informations(file_path, Noc_Rot_timesheet_prompt, Noc_Rot_timeSheet_parser) | |
return result | |
elif option == "Noc_PO": | |
# For invoice images, we assume it's a single page | |
result = get_image_informations(file_path, invoice_first_page_prompt, Noc_PurchaseOrder_information_parser) | |
return result | |
elif option =="Noc_timesheet_new": | |
result = get_image_informations(file_path, Noc_timesheet_prompt, Noc_timesheet_parser_v1) | |
return result | |
elif option == "Noc_invoice": | |
result = get_image_informations(file_path, Noc_invoice_prompt, Noc_invoice_parser_v1) | |
return result | |
else: | |
return "Unsupported file type. Please upload a PDF or image file." | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=process_file, | |
inputs=[ | |
gr.File(label="Upload PDF or Image"), # File upload input | |
gr.Radio(["Noc_timesheet_new","Noc_invoice","Noc_timesheet_residential_old", "Noc_timesheet_rotational_old", "Noc_PO"], label="Choose an option") # Radio buttons for options | |
], | |
outputs="text", # Text output | |
title="PDF/Image Processor", | |
description="Upload a PDF or image and choose an option to process the content." | |
) | |
with gr.Blocks() as app: | |
demo.render() | |
gr.Markdown("### PDF/Image examples") # Section title | |
with gr.Row(): | |
gr.Image("TS.png", label="NOC timesheet example") | |
gr.Image("invoice.png", label="NOC invoice example") | |
app.launch() |