Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,15 +12,8 @@ import numpy as np
|
|
| 12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
CONTROLNET_CACHE = "controlnet-cache"
|
| 18 |
-
SCHEDULERS = {
|
| 19 |
-
"DDIM": DDIMScheduler,
|
| 20 |
-
"DPMSolverMultistep": DPMSolverMultistepScheduler,
|
| 21 |
-
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
|
| 22 |
-
"K_EULER": EulerDiscreteScheduler,
|
| 23 |
-
}
|
| 24 |
|
| 25 |
# Function to download files
|
| 26 |
def download_file(url, folder_path, filename):
|
|
@@ -42,12 +35,7 @@ def download_file(url, folder_path, filename):
|
|
| 42 |
|
| 43 |
# Download necessary models and files
|
| 44 |
|
| 45 |
-
|
| 46 |
-
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
| 47 |
-
prompt = "masterpiece, best quality, highres"
|
| 48 |
-
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 49 |
-
result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
|
| 50 |
-
return result
|
| 51 |
|
| 52 |
# MODEL
|
| 53 |
download_file(
|
|
@@ -147,8 +135,6 @@ pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
|
| 147 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 148 |
|
| 149 |
# Move the pipeline to the device and enable memory efficient attention
|
| 150 |
-
pipe = pipe.to(device)
|
| 151 |
-
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 152 |
|
| 153 |
# Enable FreeU
|
| 154 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
|
@@ -250,6 +236,15 @@ def process_image(input_image, prompt, negative_prompt, resolution=2048, num_inf
|
|
| 250 |
|
| 251 |
return result
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
# Simple options
|
| 254 |
simple_options = [
|
| 255 |
gr.Image(type="pil", label="Input Image"),
|
|
|
|
| 12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
+
USE_TORCH_COMPILE = 0
|
| 16 |
+
ENABLE_CPU_OFFLOAD = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Function to download files
|
| 19 |
def download_file(url, folder_path, filename):
|
|
|
|
| 35 |
|
| 36 |
# Download necessary models and files
|
| 37 |
|
| 38 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# MODEL
|
| 41 |
download_file(
|
|
|
|
| 135 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 136 |
|
| 137 |
# Move the pipeline to the device and enable memory efficient attention
|
|
|
|
|
|
|
| 138 |
|
| 139 |
# Enable FreeU
|
| 140 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
|
|
|
| 236 |
|
| 237 |
return result
|
| 238 |
|
| 239 |
+
@spaces.GPU
|
| 240 |
+
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
| 241 |
+
pipe = pipe.to(device)
|
| 242 |
+
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 243 |
+
prompt = "masterpiece, best quality, highres"
|
| 244 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 245 |
+
result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
|
| 246 |
+
return result
|
| 247 |
+
|
| 248 |
# Simple options
|
| 249 |
simple_options = [
|
| 250 |
gr.Image(type="pil", label="Input Image"),
|