Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -97,21 +97,34 @@ def create_hdr_effect(original_image, hdr):
|
|
| 97 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
| 98 |
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
| 99 |
|
|
|
|
|
|
|
| 100 |
class LazyLoadPipeline:
|
| 101 |
def __init__(self):
|
| 102 |
self.pipe = None
|
| 103 |
|
| 104 |
def load(self):
|
| 105 |
if self.pipe is None:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
def setup_pipeline(self):
|
|
|
|
| 115 |
controlnet = ControlNetModel.from_single_file(
|
| 116 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
| 117 |
)
|
|
@@ -132,6 +145,7 @@ class LazyLoadPipeline:
|
|
| 132 |
)
|
| 133 |
pipe.vae = vae
|
| 134 |
|
|
|
|
| 135 |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
| 136 |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
| 137 |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
|
@@ -150,31 +164,40 @@ lazy_pipe = LazyLoadPipeline()
|
|
| 150 |
|
| 151 |
@spaces.GPU
|
| 152 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
|
|
|
| 153 |
torch.cuda.empty_cache()
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
"
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
# Gradio interface
|
| 180 |
with gr.Blocks() as demo:
|
|
|
|
| 97 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
| 98 |
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
| 99 |
|
| 100 |
+
import time
|
| 101 |
+
|
| 102 |
class LazyLoadPipeline:
|
| 103 |
def __init__(self):
|
| 104 |
self.pipe = None
|
| 105 |
|
| 106 |
def load(self):
|
| 107 |
if self.pipe is None:
|
| 108 |
+
print("Starting to load the pipeline...")
|
| 109 |
+
start_time = time.time()
|
| 110 |
+
try:
|
| 111 |
+
self.pipe = self.setup_pipeline()
|
| 112 |
+
if ENABLE_CPU_OFFLOAD:
|
| 113 |
+
print("Enabling CPU offload...")
|
| 114 |
+
self.pipe.enable_model_cpu_offload()
|
| 115 |
+
else:
|
| 116 |
+
print(f"Moving pipeline to device: {device}")
|
| 117 |
+
self.pipe.to(device)
|
| 118 |
+
if USE_TORCH_COMPILE:
|
| 119 |
+
print("Compiling the model...")
|
| 120 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 121 |
+
print(f"Pipeline loaded successfully in {time.time() - start_time:.2f} seconds")
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"Error loading pipeline: {str(e)}")
|
| 124 |
+
raise
|
| 125 |
|
| 126 |
def setup_pipeline(self):
|
| 127 |
+
print("Setting up the pipeline...")
|
| 128 |
controlnet = ControlNetModel.from_single_file(
|
| 129 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
| 130 |
)
|
|
|
|
| 145 |
)
|
| 146 |
pipe.vae = vae
|
| 147 |
|
| 148 |
+
print("Loading textual inversions and LoRA weights...")
|
| 149 |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
| 150 |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
| 151 |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
|
|
|
| 164 |
|
| 165 |
@spaces.GPU
|
| 166 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
| 167 |
+
print("Starting image processing...")
|
| 168 |
torch.cuda.empty_cache()
|
| 169 |
+
try:
|
| 170 |
+
lazy_pipe.load()
|
| 171 |
+
lazy_pipe.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 172 |
+
|
| 173 |
+
print("Resizing and upscaling image...")
|
| 174 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
| 175 |
+
print("Applying HDR effect...")
|
| 176 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
| 177 |
+
|
| 178 |
+
prompt = "masterpiece, best quality, highres"
|
| 179 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 180 |
+
|
| 181 |
+
options = {
|
| 182 |
+
"prompt": prompt,
|
| 183 |
+
"negative_prompt": negative_prompt,
|
| 184 |
+
"image": condition_image,
|
| 185 |
+
"control_image": condition_image,
|
| 186 |
+
"width": condition_image.size[0],
|
| 187 |
+
"height": condition_image.size[1],
|
| 188 |
+
"strength": strength,
|
| 189 |
+
"num_inference_steps": num_inference_steps,
|
| 190 |
+
"guidance_scale": guidance_scale,
|
| 191 |
+
"generator": torch.Generator(device=device).manual_seed(0),
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
print("Running inference...")
|
| 195 |
+
result = lazy_pipe(**options).images[0]
|
| 196 |
+
print("Image processing completed successfully")
|
| 197 |
+
return result
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print(f"Error during image processing: {str(e)}")
|
| 200 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
| 201 |
|
| 202 |
# Gradio interface
|
| 203 |
with gr.Blocks() as demo:
|