Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
inimg = gr.Image() | |
outimg = gr.AnnotatedImage() | |
custom_html = ''' | |
<center> | |
<div style="overflow:hidden ; max-width: fit-content; margin-left: auto; margin-right: auto;"> | |
<div style="float: left; font-family: Arial; font-size: 25px; color: orange; margin: 10px;">Please</div> | |
<div style="float: left"> | |
<a href="https://www.buymeacoffee.com/alloc7260"> | |
<img src="https://img.buymeacoffee.com/button-api/?text=Buy me a coffee&emoji=β&slug=alloc7260&button_colour=FFDD00&font_colour=000000&font_family=Arial&outline_colour=000000&coffee_colour=ffffff" /> | |
</a> | |
</div> | |
<div style="float: left; font-family: Arial; font-size: 25px; color: orange; margin: 10px;">for upgrade to gpu instance</div> | |
</div> | |
</center> | |
''' | |
def resize_image(image, max_width=1500): | |
original_width, original_height = image.size | |
aspect_ratio = original_width / original_height | |
new_width = min(original_width, max_width) | |
new_height = int(new_width / aspect_ratio) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
return resized_image | |
def mask(img): | |
PIL_image = Image.fromarray(img.astype('uint8'), 'RGB') | |
resimg = resize_image(PIL_image) | |
import torch | |
from transformers import pipeline | |
with torch.inference_mode(): | |
generator = pipeline("mask-generation", "facebook/sam-vit-base", points_per_batch = 64) | |
outputs = generator(resimg, points_per_batch = 64) | |
outputs_masks = outputs['masks'] | |
torch.cuda.empty_cache() | |
return (resimg, [(outputs_masks[i], str(i + 1)) for i in range(len(outputs_masks))]) | |
interface = gr.Blocks() | |
with interface: | |
gr.Interface(mask, inimg, outimg) | |
che = gr.HTML(custom_html) | |
interface.launch(show_api=False, debug=True) |