Spaces:
Runtime error
Runtime error
| import os | |
| import csv | |
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| import pandas as pd | |
| from datetime import datetime | |
| import utils | |
| from huggingface_hub import Repository | |
| import itertools | |
| import GPyOpt | |
| # Unique phase elements | |
| # Load access tokens | |
| WRITE_TOKEN = os.environ.get("WRITE_PER") # write | |
| # Logs repo path | |
| dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness" | |
| dataset_path = "logs_alloy_hardness.csv" | |
| scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7), | |
| 'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0), | |
| 'PROPERTY: HV': (107.0, 1183.0), | |
| 'PROPERTY: YS (MPa)': (62.0, 3416.0)} | |
| input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2}, | |
| 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2}, | |
| 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5, | |
| 'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10, | |
| 'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14, | |
| 'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18, | |
| 'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22, | |
| 'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27, | |
| 'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31, | |
| 'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36, | |
| 'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40, | |
| 'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44}, | |
| 'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}} | |
| unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER'] | |
| input_cols = { | |
| "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) " | |
| "Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)", | |
| "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) " | |
| "Choose between Single (S), Multiphase (M) and other (OTHER)", | |
| "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) " | |
| "Choose between BCC, FCC and other ", | |
| "PROPERTY: Processing method": "(PROPERTY: Processing method) " | |
| "Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)", | |
| "PROPERTY: Microstructure": "(PROPERTY: Microstructure) " | |
| "Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))", | |
| } | |
| def process_microstructure(list_phases): | |
| permutations = list(itertools.permutations(list_phases)) | |
| permutations_strings = [str('+'.join(list(e))) for e in permutations] | |
| for e in permutations_strings: | |
| if e in list(input_mapping['PROPERTY: Microstructure'].keys()): | |
| return e | |
| return 'OTHER' | |
| def write_logs(message, message_type="Prediction"): | |
| """ | |
| Write logs | |
| """ | |
| #with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False): | |
| # with open(dataset_path, "a") as csvfile: | |
| # writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) | |
| # writer.writerow( | |
| # {"name": message_type, "message": message, "time": str(datetime.now())} | |
| # ) | |
| return | |
| def predict(x, request: gr.Request): | |
| """ | |
| Predict the hardness and yield strength using the ML model. Input data is a dataframe | |
| """ | |
| loaded_model = tf.keras.models.load_model("hardness_nn_graph_separate_elements.h5") | |
| print("summary is", loaded_model.summary()) | |
| #x = x.replace("", 0) | |
| x = np.asarray(x).astype("float32") | |
| y = loaded_model.predict(x) | |
| y_hardness = y[0][0] | |
| y_ys = y[0][1] | |
| minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV'] | |
| minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)'] | |
| print("Prediction is ", y) | |
| if request is not None: # Verify if request is not None (when building the app the first request is None) | |
| message = f"{request.username}_{request.client.host}" | |
| print("MESSAGE") | |
| print(message) | |
| res = write_logs(message) | |
| #interpret_fig = utils.interpret(x) | |
| return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12, | |
| round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12) | |
| def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request): | |
| predictions = predict(x, request) | |
| error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target))) | |
| error_ys = np.sqrt(np.square(predictions[2]-float(ys_target))) | |
| print("Optimization step is ", predictions, float(hardness_target), float(ys_target), | |
| error_hardness, error_ys) | |
| return error_hardness + error_ys | |
| def predict_inverse(hardness_original_target, ys_original_target, metals_to_use, request: gr.Request): | |
| one_hot_columns = utils.return_feature_names() | |
| min_df_hardness, max_df_hardness = scaling_factors["PROPERTY: HV"] | |
| hardness_original_target = float(hardness_original_target) | |
| min_df_ys, max_df_ys = scaling_factors["PROPERTY: YS (MPa)"] | |
| ys_original_target = float(ys_original_target) | |
| hardness_target = (hardness_original_target-min_df_hardness)/(max_df_hardness-min_df_hardness) | |
| ys_target = (ys_original_target-min_df_ys)/(max_df_ys-min_df_ys) | |
| continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)', | |
| 'PROPERTY: Calculated Young modulus (GPa)', | |
| 'PROPERTY: Metal Al', 'PROPERTY: Metal Co', | |
| 'PROPERTY: Metal Fe', 'PROPERTY: Metal Ni', 'PROPERTY: Metal Si', | |
| 'PROPERTY: Metal Cr', 'PROPERTY: Metal Nb', 'PROPERTY: Metal Ti', | |
| 'PROPERTY: Metal Mn', 'PROPERTY: Metal V', 'PROPERTY: Metal Mo', | |
| 'PROPERTY: Metal Cu', 'PROPERTY: Metal Ta', 'PROPERTY: Metal Zr', | |
| 'PROPERTY: Metal Hf', 'PROPERTY: Metal W', 'PROPERTY: Metal Zn', | |
| 'PROPERTY: Metal Sn', 'PROPERTY: Metal Re', 'PROPERTY: Metal C', | |
| 'PROPERTY: Metal Pd', 'PROPERTY: Metal Sc', 'PROPERTY: Metal Y'] | |
| categorical_variables = list(one_hot_columns) | |
| for c in continuous_variables: | |
| categorical_variables.remove(c) | |
| # Metals constraints | |
| metals_elements = [c for c in continuous_variables if c.startswith("PROPERTY: Metal")] | |
| # metals_to_use = ['Al', 'Co', 'Fe', 'Cr'] | |
| metals_to_use = ["PROPERTY: Metal " + metals_to_use[i] for i in range(len(metals_to_use))] | |
| # Domain | |
| domain = [] | |
| for c in one_hot_columns: | |
| if c in continuous_variables: | |
| if c.startswith("PROPERTY: Metal") and c not in metals_to_use: | |
| domain.append({'name': str(c), 'type': 'continuous', 'domain': (0., 0.)}) | |
| else: | |
| domain.append({'name': str(c), 'type': 'continuous', 'domain': (0., 1.)})#(0.,1.)}) | |
| else: | |
| domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)}) | |
| # Constraints | |
| constraints = [] | |
| constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure'] | |
| for constraint in constrained_columns: | |
| sum_string = '' | |
| for i in range (len(one_hot_columns)): | |
| column_one_hot = one_hot_columns[i] | |
| if column_one_hot.startswith(constraint): | |
| sum_string = sum_string+"+x[:," + str(i) + "]" | |
| constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'}) | |
| constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'}) | |
| def fit_outputs(x): | |
| return fit_outputs_constraints(x, hardness_target, ys_target, request) | |
| opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize | |
| domain = domain, # box-constraints of the problem | |
| constraints = constraints, | |
| acquisition_type ='LCB', # LCB acquisition | |
| acquisition_weight = 0.1) # Exploration exploitation | |
| # it may take a few seconds | |
| opt.run_optimization(max_iter=5) | |
| # opt.plot_convergence() | |
| x_best = opt.X[np.argmin(opt.Y)] | |
| best_params = dict(zip( | |
| [el['name'] for el in domain], | |
| [[x] for x in x_best])) | |
| optimized_x = pd.DataFrame.from_dict(best_params) | |
| for c in optimized_x.columns: | |
| if c in continuous_variables: | |
| if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']: | |
| optimized_x[c]=round(optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0], 2) | |
| result = optimized_x | |
| result = result[result>0.0].dropna(axis=1) | |
| # Normalize metals outputs | |
| sum_metals = np.sum(result[c] for c in list(result.columns) if c.startswith("PROPERTY: Metal")) | |
| for column in result.columns: | |
| if column.startswith("PROPERTY: Metal"): | |
| result[column]/= sum_metals | |
| result[column] = round(result[column], 2) | |
| columns = list(result.columns) | |
| return (result[columns[2:-3]], columns[-3], result.at[0, columns[0]], | |
| result.at[0, columns[1]], columns[-2], columns[-1]) | |
| example_inputs = [820, 1800, ['Al', 'Fe']] | |
| css_styling = """#submit {background: #1eccd8} | |
| #submit:hover {background: #a2f1f6} | |
| .output-image, .input-image, .image-preview {height: 250px !important} | |
| .output-plot {height: 250px !important}""" | |
| light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only | |
| c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode | |
| c200="#a1c6db", # Component borders | |
| c300="#FFFFFF", # | |
| c400="#e4f3fa", # Footer text | |
| c500="#0c1538", # Text of component headers in light mode only | |
| c600="#a1c6db", # Top corner of button in dark mode | |
| c700="#475383", # Button text in light mode + component borders in dark mode | |
| c800="#0c1538", # Markdown text in light mode | |
| c900="#a1c6db", # Background of dataframe - dark mode | |
| c950="#0c1538") # Background in dark mode only | |
| # secondary color used for highlight box content when typing in light mode, and download option in dark mode | |
| # primary color used for login button in dark mode | |
| osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors) | |
| page_title = "Alloys' hardness and yield strength prediction" | |
| favicon_path = "osiumai_favicon.ico" | |
| logo_path = "osiumai_logo.jpg" | |
| html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}"> | |
| <img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>""" | |
| with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo: | |
| #gr.HTML(html) | |
| gr.Markdown("# <p style='text-align: center;'>Get optimal alloy recommendations based on your target performance</p>") | |
| gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength") | |
| with gr.Row(): | |
| clear_button = gr.Button("Clear") | |
| prediction_button = gr.Button("Predict", elem_id="submit") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### The target performance of your alloy") | |
| input_hardness = gr.Text(label="Enter your target hardness (in HV)") | |
| input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)") | |
| gr.Markdown('### Your metallic elements constraints') | |
| metals_constraints = gr.CheckboxGroup( | |
| choices=['Al', 'Co', 'Fe', 'Ni', 'Si', 'Cr', 'Nb', 'Ti', | |
| 'Mn', 'V', 'Mo', 'Cu', 'Ta', 'Zr', | |
| 'Hf', 'W', 'Zn', 'Sn', 'Re', 'C', | |
| 'Pd', 'Sc', 'Y'], label="Your metals constraints", | |
| ) | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### Your optimal alloy formula and processing conditions") | |
| optimal_formula = gr.DataFrame(label="Your optimal alloy formula", wrap=True) | |
| optimal_processing_method = gr.Text(label="Processing method") | |
| gr.Markdown("### Additional information about your optimal alloy") | |
| density = gr.Text(label="Density (g/cm3)") | |
| young_modulus = gr.Text(label = "Young modulus (GPa)") | |
| microstructure = gr.Text(label="Microstructure (BCC/FCC/Other)") | |
| phase = gr.Text(label="Number of phases (S/M)") | |
| with gr.Row(): | |
| gr.Examples([example_inputs], [input_hardness, input_yield_strength, metals_constraints]) | |
| prediction_button.click( | |
| fn=predict_inverse, | |
| inputs=[input_hardness, input_yield_strength, metals_constraints], | |
| outputs=[optimal_formula, optimal_processing_method, density, young_modulus, microstructure, phase], | |
| show_progress=True, | |
| ) | |
| clear_button.click( | |
| lambda x: [gr.update(value=None)] * 9, | |
| [], | |
| [ | |
| input_hardness, | |
| input_yield_strength, | |
| metals_constraints, | |
| optimal_formula, | |
| optimal_processing_method, | |
| density, young_modulus, | |
| microstructure, phase | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(concurrency_count=2) | |
| demo.launch() |