Spaces:
Running
Running
inti commit
Browse files- .gitignore +6 -0
- README.md +53 -6
- ZeroEval-main/result_dirs/zebra-grid.summary.json +321 -0
- __init__.py +0 -0
- _about_us.md +16 -0
- _header.md +5 -0
- _metrics.md +1 -0
- app.py +164 -0
- constants.py +283 -0
- data_utils.py +46 -0
- init.py +0 -0
- model_info.json +65 -0
- requirements.txt +4 -0
- style.css +27 -0
- themes.py +45 -0
- update_data.sh +40 -0
- update_table.sh +0 -0
- utils_display.py +34 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
*.pyc
|
| 3 |
+
ZeroEval-main/.DS_Store
|
| 4 |
+
ZeroEval-main/result_dirs/.DS_Store
|
| 5 |
+
ZeroEval-main/result_dirs/zebra-grid/.DS_Store
|
| 6 |
+
.DS_Store
|
README.md
CHANGED
|
@@ -1,13 +1,60 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Zebra Logic Bench
|
| 3 |
+
emoji: 🦓
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.19.2
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
fullWidth: true
|
| 11 |
+
hf_oauth: true
|
| 12 |
+
api: false
|
| 13 |
+
tags:
|
| 14 |
+
- leaderboard
|
| 15 |
+
datasets:
|
| 16 |
+
- allenai/ZebraLogicBench
|
| 17 |
+
- allenai/ZebraLogicBench-private
|
| 18 |
+
models:
|
| 19 |
+
- Qwen/Qwen2-72B-Instruct
|
| 20 |
+
- Qwen/Qwen1.5-72B-Chat
|
| 21 |
+
- Qwen/Qwen1.5-7B-Chat
|
| 22 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
| 23 |
+
- meta-llama/Meta-Llama-3-70B-Instruct
|
| 24 |
+
- meta-llama/Llama-2-13b-chat-hf
|
| 25 |
+
- meta-llama/Llama-2-70b-chat-hf
|
| 26 |
+
- meta-llama/Llama-2-7b-chat-hf
|
| 27 |
+
- mistralai/Mistral-7B-Instruct-v0.1
|
| 28 |
+
- mistralai/Mistral-7B-Instruct-v0.2
|
| 29 |
+
- mistralai/Mixtral-8x7B-Instruct-v0.1
|
| 30 |
+
- microsoft/Phi-3-medium-128k-instruct
|
| 31 |
+
- microsoft/Phi-3-mini-128k-instruct
|
| 32 |
+
- NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
|
| 33 |
+
- NousResearch/Hermes-2-Theta-Llama-3-8B
|
| 34 |
+
- 01-ai/Yi-1.5-34B-Chat
|
| 35 |
+
- 01-ai/Yi-1.5-9B-Chat
|
| 36 |
+
- 01-ai/Yi-1.5-6B-Chat
|
| 37 |
+
- google/gemma-7b-it
|
| 38 |
+
- google/gemma-2b-it
|
| 39 |
+
- allenai/tulu-2-dpo-70b
|
| 40 |
+
- HuggingFaceH4/zephyr-7b-beta
|
| 41 |
+
- Nexusflow/Starling-LM-7B-beta
|
| 42 |
+
- databricks/dbrx-instruct
|
| 43 |
+
- princeton-nlp/Llama-3-Instruct-8B-SimPO
|
| 44 |
+
- chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
|
| 45 |
+
- chujiezheng/Starling-LM-7B-beta-ExPO
|
| 46 |
+
- ZhangShenao/SELM-Zephyr-7B-iter-3
|
| 47 |
+
- deepseek-ai/DeepSeek-V2-Chat
|
| 48 |
+
- m-a-p/neo_7b_instruct_v0.1
|
| 49 |
+
- 01-ai/Yi-34B-chat
|
| 50 |
+
- lmsys/vicuna-13b-v1.5
|
| 51 |
+
- HuggingFaceH4/zephyr-7b-gemma-v0.1
|
| 52 |
+
- deepseek-ai/DeepSeek-Coder-V2
|
| 53 |
+
- THUDM/glm-4-9b-chat
|
| 54 |
+
- chujiezheng/neo_7b_instruct_v0.1-ExPO
|
| 55 |
+
- ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3
|
| 56 |
---
|
| 57 |
|
| 58 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 59 |
+
|
| 60 |
+
Paper: arxiv.org/abs/2406.04770
|
ZeroEval-main/result_dirs/zebra-grid.summary.json
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"Model": "claude-3-5-sonnet-20240620",
|
| 4 |
+
"Mode": "greedy",
|
| 5 |
+
"Puzzle Acc": "33.40",
|
| 6 |
+
"Cell Acc": "54.34",
|
| 7 |
+
"No answer": "0.00",
|
| 8 |
+
"Easy Puzzle Acc": "87.50",
|
| 9 |
+
"Hard Puzzle Acc": "12.36",
|
| 10 |
+
"Total Puzzles": 1000,
|
| 11 |
+
"Reason Lens": "1141.94"
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"Model": "claude-3-5-sonnet-20240620",
|
| 15 |
+
"Mode": "sampling",
|
| 16 |
+
"Puzzle Acc": "33.40",
|
| 17 |
+
"Cell Acc": "53.01",
|
| 18 |
+
"No answer": "0.10",
|
| 19 |
+
"Easy Puzzle Acc": "88.21",
|
| 20 |
+
"Hard Puzzle Acc": "12.08",
|
| 21 |
+
"Total Puzzles": 1000,
|
| 22 |
+
"Reason Lens": "1153.83"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"Model": "gpt-4o-2024-05-13",
|
| 26 |
+
"Mode": "sampling",
|
| 27 |
+
"Puzzle Acc": "30.80",
|
| 28 |
+
"Cell Acc": "46.19",
|
| 29 |
+
"No answer": "6.60",
|
| 30 |
+
"Easy Puzzle Acc": "81.07",
|
| 31 |
+
"Hard Puzzle Acc": "11.25",
|
| 32 |
+
"Total Puzzles": 1000,
|
| 33 |
+
"Reason Lens": "1549.74"
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"Model": "gpt-4-turbo-2024-04-09",
|
| 37 |
+
"Mode": "greedy",
|
| 38 |
+
"Puzzle Acc": "28.40",
|
| 39 |
+
"Cell Acc": "47.90",
|
| 40 |
+
"No answer": "0.10",
|
| 41 |
+
"Easy Puzzle Acc": "80.71",
|
| 42 |
+
"Hard Puzzle Acc": "8.06",
|
| 43 |
+
"Total Puzzles": 1000,
|
| 44 |
+
"Reason Lens": "1148.46"
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"Model": "gpt-4o-2024-05-13",
|
| 48 |
+
"Mode": "greedy",
|
| 49 |
+
"Puzzle Acc": "28.20",
|
| 50 |
+
"Cell Acc": "38.72",
|
| 51 |
+
"No answer": "19.30",
|
| 52 |
+
"Easy Puzzle Acc": "77.86",
|
| 53 |
+
"Hard Puzzle Acc": "8.89",
|
| 54 |
+
"Total Puzzles": 1000,
|
| 55 |
+
"Reason Lens": "1643.51"
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"Model": "gpt-4-0314",
|
| 59 |
+
"Mode": "greedy",
|
| 60 |
+
"Puzzle Acc": "27.10",
|
| 61 |
+
"Cell Acc": "47.43",
|
| 62 |
+
"No answer": "0.20",
|
| 63 |
+
"Easy Puzzle Acc": "77.14",
|
| 64 |
+
"Hard Puzzle Acc": "7.64",
|
| 65 |
+
"Total Puzzles": 1000,
|
| 66 |
+
"Reason Lens": "1203.17"
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"Model": "claude-3-opus-20240229",
|
| 70 |
+
"Mode": "greedy",
|
| 71 |
+
"Puzzle Acc": "27.00",
|
| 72 |
+
"Cell Acc": "48.91",
|
| 73 |
+
"No answer": "0.00",
|
| 74 |
+
"Easy Puzzle Acc": "78.21",
|
| 75 |
+
"Hard Puzzle Acc": "7.08",
|
| 76 |
+
"Total Puzzles": 1000,
|
| 77 |
+
"Reason Lens": "855.72"
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"Model": "gpt-4-turbo-2024-04-09",
|
| 81 |
+
"Mode": "sampling",
|
| 82 |
+
"Puzzle Acc": "26.40",
|
| 83 |
+
"Cell Acc": "47.93",
|
| 84 |
+
"No answer": "0.00",
|
| 85 |
+
"Easy Puzzle Acc": "74.29",
|
| 86 |
+
"Hard Puzzle Acc": "7.78",
|
| 87 |
+
"Total Puzzles": 1000,
|
| 88 |
+
"Reason Lens": "1165.90"
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"Model": "deepseek-chat",
|
| 92 |
+
"Mode": "greedy",
|
| 93 |
+
"Puzzle Acc": "22.70",
|
| 94 |
+
"Cell Acc": "42.46",
|
| 95 |
+
"No answer": "5.20",
|
| 96 |
+
"Easy Puzzle Acc": "68.57",
|
| 97 |
+
"Hard Puzzle Acc": "4.86",
|
| 98 |
+
"Total Puzzles": 1000,
|
| 99 |
+
"Reason Lens": "1260.23"
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"Model": "Qwen2-72B-Instruct",
|
| 103 |
+
"Mode": "greedy",
|
| 104 |
+
"Puzzle Acc": "21.40",
|
| 105 |
+
"Cell Acc": "38.32",
|
| 106 |
+
"No answer": "10.20",
|
| 107 |
+
"Easy Puzzle Acc": "63.93",
|
| 108 |
+
"Hard Puzzle Acc": "4.86",
|
| 109 |
+
"Total Puzzles": 1000,
|
| 110 |
+
"Reason Lens": "1813.82"
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"Model": "deepseek-coder",
|
| 114 |
+
"Mode": "greedy",
|
| 115 |
+
"Puzzle Acc": "21.10",
|
| 116 |
+
"Cell Acc": "41.58",
|
| 117 |
+
"No answer": "4.90",
|
| 118 |
+
"Easy Puzzle Acc": "64.64",
|
| 119 |
+
"Hard Puzzle Acc": "4.17",
|
| 120 |
+
"Total Puzzles": 1000,
|
| 121 |
+
"Reason Lens": "1324.55"
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"Model": "gemini-1.5-pro",
|
| 125 |
+
"Mode": "sampling",
|
| 126 |
+
"Puzzle Acc": "19.70",
|
| 127 |
+
"Cell Acc": "45.24",
|
| 128 |
+
"No answer": "0.40",
|
| 129 |
+
"Easy Puzzle Acc": "60.00",
|
| 130 |
+
"Hard Puzzle Acc": "4.03",
|
| 131 |
+
"Total Puzzles": 1000,
|
| 132 |
+
"Reason Lens": "1356.77"
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"Model": "gemini-1.5-flash",
|
| 136 |
+
"Mode": "greedy",
|
| 137 |
+
"Puzzle Acc": "19.40",
|
| 138 |
+
"Cell Acc": "31.77",
|
| 139 |
+
"No answer": "22.70",
|
| 140 |
+
"Easy Puzzle Acc": "59.29",
|
| 141 |
+
"Hard Puzzle Acc": "3.89",
|
| 142 |
+
"Total Puzzles": 1000,
|
| 143 |
+
"Reason Lens": "1538.18"
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"Model": "gemini-1.5-pro",
|
| 147 |
+
"Mode": "greedy",
|
| 148 |
+
"Puzzle Acc": "19.40",
|
| 149 |
+
"Cell Acc": "44.59",
|
| 150 |
+
"No answer": "0.80",
|
| 151 |
+
"Easy Puzzle Acc": "55.71",
|
| 152 |
+
"Hard Puzzle Acc": "5.28",
|
| 153 |
+
"Total Puzzles": 1000,
|
| 154 |
+
"Reason Lens": "1336.17"
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"Model": "yi-large-preview",
|
| 158 |
+
"Mode": "greedy",
|
| 159 |
+
"Puzzle Acc": "18.90",
|
| 160 |
+
"Cell Acc": "42.61",
|
| 161 |
+
"No answer": "1.40",
|
| 162 |
+
"Easy Puzzle Acc": "58.93",
|
| 163 |
+
"Hard Puzzle Acc": "3.33",
|
| 164 |
+
"Total Puzzles": 1000,
|
| 165 |
+
"Reason Lens": "833.36"
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"Model": "yi-large",
|
| 169 |
+
"Mode": "greedy",
|
| 170 |
+
"Puzzle Acc": "18.80",
|
| 171 |
+
"Cell Acc": "39.83",
|
| 172 |
+
"No answer": "1.80",
|
| 173 |
+
"Easy Puzzle Acc": "58.21",
|
| 174 |
+
"Hard Puzzle Acc": "3.47",
|
| 175 |
+
"Total Puzzles": 1000,
|
| 176 |
+
"Reason Lens": "757.01"
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"Model": "claude-3-sonnet-20240229",
|
| 180 |
+
"Mode": "greedy",
|
| 181 |
+
"Puzzle Acc": "18.70",
|
| 182 |
+
"Cell Acc": "43.66",
|
| 183 |
+
"No answer": "0.00",
|
| 184 |
+
"Easy Puzzle Acc": "58.93",
|
| 185 |
+
"Hard Puzzle Acc": "3.06",
|
| 186 |
+
"Total Puzzles": 1000,
|
| 187 |
+
"Reason Lens": "1095.37"
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"Model": "Qwen2-72B-Instruct",
|
| 191 |
+
"Mode": "sampling",
|
| 192 |
+
"Puzzle Acc": "18.70",
|
| 193 |
+
"Cell Acc": "40.57",
|
| 194 |
+
"No answer": "3.20",
|
| 195 |
+
"Easy Puzzle Acc": "57.50",
|
| 196 |
+
"Hard Puzzle Acc": "3.61",
|
| 197 |
+
"Total Puzzles": 1000,
|
| 198 |
+
"Reason Lens": "1894.72"
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"Model": "gemini-1.5-flash",
|
| 202 |
+
"Mode": "sampling",
|
| 203 |
+
"Puzzle Acc": "18.40",
|
| 204 |
+
"Cell Acc": "36.03",
|
| 205 |
+
"No answer": "12.80",
|
| 206 |
+
"Easy Puzzle Acc": "57.86",
|
| 207 |
+
"Hard Puzzle Acc": "3.06",
|
| 208 |
+
"Total Puzzles": 1000,
|
| 209 |
+
"Reason Lens": "1713.03"
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"Model": "Meta-Llama-3-70B-Instruct",
|
| 213 |
+
"Mode": "greedy",
|
| 214 |
+
"Puzzle Acc": "16.80",
|
| 215 |
+
"Cell Acc": "42.31",
|
| 216 |
+
"No answer": "0.20",
|
| 217 |
+
"Easy Puzzle Acc": "52.86",
|
| 218 |
+
"Hard Puzzle Acc": "2.78",
|
| 219 |
+
"Total Puzzles": 1000,
|
| 220 |
+
"Reason Lens": "809.95"
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"Model": "gemma-2-27b-it@nvidia",
|
| 224 |
+
"Mode": "greedy",
|
| 225 |
+
"Puzzle Acc": "16.30",
|
| 226 |
+
"Cell Acc": "41.18",
|
| 227 |
+
"No answer": "1.10",
|
| 228 |
+
"Easy Puzzle Acc": "50.71",
|
| 229 |
+
"Hard Puzzle Acc": "2.92",
|
| 230 |
+
"Total Puzzles": 1000,
|
| 231 |
+
"Reason Lens": "1014.56"
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"Model": "claude-3-haiku-20240307",
|
| 235 |
+
"Mode": "greedy",
|
| 236 |
+
"Puzzle Acc": "14.30",
|
| 237 |
+
"Cell Acc": "37.87",
|
| 238 |
+
"No answer": "0.10",
|
| 239 |
+
"Easy Puzzle Acc": "47.86",
|
| 240 |
+
"Hard Puzzle Acc": "1.25",
|
| 241 |
+
"Total Puzzles": 1000,
|
| 242 |
+
"Reason Lens": "1015.06"
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"Model": "reka-core-20240501",
|
| 246 |
+
"Mode": "greedy",
|
| 247 |
+
"Puzzle Acc": "13.00",
|
| 248 |
+
"Cell Acc": "33.88",
|
| 249 |
+
"No answer": "4.00",
|
| 250 |
+
"Easy Puzzle Acc": "43.21",
|
| 251 |
+
"Hard Puzzle Acc": "1.25",
|
| 252 |
+
"Total Puzzles": 1000,
|
| 253 |
+
"Reason Lens": "1078.29"
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"Model": "gemma-2-9b-it",
|
| 257 |
+
"Mode": "greedy",
|
| 258 |
+
"Puzzle Acc": "12.90",
|
| 259 |
+
"Cell Acc": "37.07",
|
| 260 |
+
"No answer": "0.50",
|
| 261 |
+
"Easy Puzzle Acc": "42.14",
|
| 262 |
+
"Hard Puzzle Acc": "1.53",
|
| 263 |
+
"Total Puzzles": 1000,
|
| 264 |
+
"Reason Lens": "859.14"
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"Model": "gemma-2-9b-it@nvidia",
|
| 268 |
+
"Mode": "greedy",
|
| 269 |
+
"Puzzle Acc": "12.80",
|
| 270 |
+
"Cell Acc": "36.79",
|
| 271 |
+
"No answer": "0.00",
|
| 272 |
+
"Easy Puzzle Acc": "41.79",
|
| 273 |
+
"Hard Puzzle Acc": "1.53",
|
| 274 |
+
"Total Puzzles": 1000,
|
| 275 |
+
"Reason Lens": "849.84"
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"Model": "Meta-Llama-3-8B-Instruct",
|
| 279 |
+
"Mode": "greedy",
|
| 280 |
+
"Puzzle Acc": "11.90",
|
| 281 |
+
"Cell Acc": "23.70",
|
| 282 |
+
"No answer": "29.20",
|
| 283 |
+
"Easy Puzzle Acc": "40.71",
|
| 284 |
+
"Hard Puzzle Acc": "0.69",
|
| 285 |
+
"Total Puzzles": 1000,
|
| 286 |
+
"Reason Lens": "1216.40"
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"Model": "gpt-3.5-turbo-0125",
|
| 290 |
+
"Mode": "greedy",
|
| 291 |
+
"Puzzle Acc": "10.10",
|
| 292 |
+
"Cell Acc": "33.06",
|
| 293 |
+
"No answer": "0.10",
|
| 294 |
+
"Easy Puzzle Acc": "33.57",
|
| 295 |
+
"Hard Puzzle Acc": "0.97",
|
| 296 |
+
"Total Puzzles": 1000,
|
| 297 |
+
"Reason Lens": "820.66"
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"Model": "reka-flash-20240226",
|
| 301 |
+
"Mode": "greedy",
|
| 302 |
+
"Puzzle Acc": "9.30",
|
| 303 |
+
"Cell Acc": "25.67",
|
| 304 |
+
"No answer": "18.70",
|
| 305 |
+
"Easy Puzzle Acc": "30.71",
|
| 306 |
+
"Hard Puzzle Acc": "0.97",
|
| 307 |
+
"Total Puzzles": 1000,
|
| 308 |
+
"Reason Lens": "1074.80"
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"Model": "Qwen2-7B-Instruct",
|
| 312 |
+
"Mode": "greedy",
|
| 313 |
+
"Puzzle Acc": "8.40",
|
| 314 |
+
"Cell Acc": "22.06",
|
| 315 |
+
"No answer": "24.40",
|
| 316 |
+
"Easy Puzzle Acc": "29.29",
|
| 317 |
+
"Hard Puzzle Acc": "0.28",
|
| 318 |
+
"Total Puzzles": 1000,
|
| 319 |
+
"Reason Lens": "1473.23"
|
| 320 |
+
}
|
| 321 |
+
]
|
__init__.py
ADDED
|
File without changes
|
_about_us.md
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## About Us
|
| 2 |
+
|
| 3 |
+
### Team
|
| 4 |
+
|
| 5 |
+
We are from [AllenAI](https://allenai.org/) (AI2), a non-profit research organization.
|
| 6 |
+
|
| 7 |
+
[Bill Yuchen Lin](https://yuchenlin.xyz/), [Ronan Le Bras](https://rlebras.github.io/), and [Yejin Choi](https://homes.cs.washington.edu/~yejin/).
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
### Contact
|
| 11 |
+
|
| 12 |
+
Please contact us in the following ways:
|
| 13 |
+
- Github Issues/PRs for adding a new model: [https://github.com/allenai/WildBench](https://github.com/allenai/WildBench)
|
| 14 |
+
- HF Discussions for general questions about the leaderboard: [https://huggingface.co/spaces/allenai/WildBench/discussions](https://huggingface.co/spaces/allenai/WildBench/discussions)
|
| 15 |
+
- Other questions: Please contact Yuchen with email: yuchenl[at]allenai[dot]org
|
| 16 |
+
|
_header.md
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<br/>
|
| 2 |
+
|
| 3 |
+
# 🦁 WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
|
| 4 |
+
[📑 Paper](https://allenai.github.io/WildBench/WildBench_paper.pdf) | [💻 GitHub](https://github.com/allenai/WildBench) | [🤗 HuggingFace](https://huggingface.co/collections/allenai/wildbench-65e8f2fa9c1260a85a933627) | [🐦 X](https://x.com/billyuchenlin/status/1795746137875554531) | [💬 Discussion](https://huggingface.co/spaces/allenai/WildBench/discussions) | ⚙️ **Version**: **V2** | **# Models**: {model_num} | Updated: **{LAST_UPDATED}**
|
| 5 |
+
|
_metrics.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
##
|
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
|
| 2 |
+
import ast
|
| 3 |
+
import argparse
|
| 4 |
+
import glob
|
| 5 |
+
import pickle
|
| 6 |
+
import plotly
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import json
|
| 14 |
+
from constants import *
|
| 15 |
+
from datetime import datetime, timezone
|
| 16 |
+
# from datasets import Dataset, load_dataset, concatenate_datasets
|
| 17 |
+
import os, uuid
|
| 18 |
+
from utils_display import model_info
|
| 19 |
+
from constants import column_names, LEADERBOARD_REMARKS, DEFAULT_K, LEADERBOARD_REMARKS_MAIN
|
| 20 |
+
import pytz
|
| 21 |
+
from data_utils import post_processing
|
| 22 |
+
|
| 23 |
+
# get the last updated time from the elo_ranks.all.jsonl file
|
| 24 |
+
LAST_UPDATED = None
|
| 25 |
+
# with open("_intro.md", "r") as f:
|
| 26 |
+
# INTRO_MD = f.read()
|
| 27 |
+
INTRO_MD = ""
|
| 28 |
+
with open("_about_us.md", "r") as f:
|
| 29 |
+
ABOUT_MD = f.read()
|
| 30 |
+
|
| 31 |
+
with open("_header.md", "r") as f:
|
| 32 |
+
HEADER_MD = f.read()
|
| 33 |
+
|
| 34 |
+
with open("_metrics.md", "r") as f:
|
| 35 |
+
METRICS_MD = f.read()
|
| 36 |
+
|
| 37 |
+
original_df = None
|
| 38 |
+
# available_models = [] # to be filled in later
|
| 39 |
+
available_models = list(model_info.keys())
|
| 40 |
+
|
| 41 |
+
def _tab_leaderboard():
|
| 42 |
+
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs, score_df
|
| 43 |
+
with gr.TabItem("📊 Main", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"):
|
| 44 |
+
default_main_df = original_df.copy()
|
| 45 |
+
default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
|
| 46 |
+
default_main_df_no_task = default_main_df.copy()
|
| 47 |
+
# default_main_df_no_task = hide_task_column(default_main_df)
|
| 48 |
+
# default_main_df_no_task = rerank(default_main_df_no_task, rank_column=WB_ELO_COLUMN)
|
| 49 |
+
# default_main_df_no_task = rerank(default_main_df_no_task, rank_column=HYBRID_AVG_COLUMN)
|
| 50 |
+
with gr.Row():
|
| 51 |
+
# with gr.Column(scale=5):
|
| 52 |
+
# gr.Markdown(LEADERBOARD_REMARKS_MAIN, elem_classes="markdown-text-small top-left-LP")
|
| 53 |
+
# with gr.Row():
|
| 54 |
+
# with gr.Column(scale=2):
|
| 55 |
+
# md = gr.Markdown(" ### 👀 More presentation options ⬇️", elem_classes="markdown-text")
|
| 56 |
+
|
| 57 |
+
# with gr.Column(scale=3):
|
| 58 |
+
# with gr.Column(scale=2):
|
| 59 |
+
# gr.Markdown(f"""**__🪧 Default options:__** K={DEFAULT_K}; Hybrid-Macro; for best corr w/ LMSYS Elo.""", elem_classes="markdown-text")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# gr.Markdown(LENGTH_MARGIN_DESC_MD, elem_classes="markdown-text-tiny no_margin")
|
| 63 |
+
with gr.Column(scale=5):
|
| 64 |
+
with gr.Accordion("💬 Metric explanations", open=False, elem_classes="accordion-label"):
|
| 65 |
+
gr.Markdown(LEADERBOARD_REMARKS_MAIN, elem_classes="markdown-text-small no_margin")
|
| 66 |
+
rank_column_radio = gr.Radio(["🆚+💯 Hybrid", "🆚 Reward-Mix (Pairwise)", "💯 Score (Individual)", "🌟 WB Elo (beta)" ], show_label=False, elem_id="rank-column-radio",
|
| 67 |
+
value="🌟 WB Elo (beta)"
|
| 68 |
+
# value="🆚+💯 Hybrid"
|
| 69 |
+
)
|
| 70 |
+
with gr.Column(scale=2):
|
| 71 |
+
with gr.Row():
|
| 72 |
+
checkbox_show_task_categorized = gr.Checkbox(label="🆚 by Task Type", elem_id="show-task-categorized", value=False)
|
| 73 |
+
show_open_source_model_only = gr.Checkbox(label="🔑 Open Models", elem_id="show-open-source-models", value=False)
|
| 74 |
+
# with gr.Row():
|
| 75 |
+
# with gr.Column(scale=2):
|
| 76 |
+
|
| 77 |
+
leaderboard_table = gr.components.Dataframe(
|
| 78 |
+
value=default_main_df_no_task,
|
| 79 |
+
datatype= ["number", "markdown", "markdown", "number"],
|
| 80 |
+
# max_rows=None,
|
| 81 |
+
height=6000,
|
| 82 |
+
elem_id="leaderboard-table",
|
| 83 |
+
interactive=False,
|
| 84 |
+
visible=True,
|
| 85 |
+
column_widths=[50, 260,120, 120, 120, 130,100,100,110,100],
|
| 86 |
+
wrap=True
|
| 87 |
+
# min_width=60,
|
| 88 |
+
)
|
| 89 |
+
# checkbox_show_task_categorized.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
|
| 90 |
+
# show_open_source_model_only.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
|
| 91 |
+
# rank_column_radio.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def _tab_submit():
|
| 96 |
+
pass
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def build_demo():
|
| 100 |
+
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
|
| 101 |
+
|
| 102 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
|
| 103 |
+
gr.HTML(BANNER, elem_id="banner")
|
| 104 |
+
# convert LAST_UPDATED to the PDT time
|
| 105 |
+
LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
|
| 106 |
+
# header_md_text = HEADER_MD.replace("{model_num}", str(len(original_df["-1"]))).replace("{LAST_UPDATED}", str(LAST_UPDATED))
|
| 107 |
+
# gr.Markdown(header_md_text, elem_classes="markdown-text")
|
| 108 |
+
|
| 109 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 110 |
+
with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0):
|
| 111 |
+
_tab_leaderboard()
|
| 112 |
+
|
| 113 |
+
with gr.TabItem("🚀 Submit Your Results", elem_id="od-benchmark-tab-table", id=3):
|
| 114 |
+
_tab_submit()
|
| 115 |
+
|
| 116 |
+
with gr.TabItem("📮 About Us", elem_id="od-benchmark-tab-table", id=4):
|
| 117 |
+
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
|
| 118 |
+
|
| 119 |
+
with gr.Row():
|
| 120 |
+
with gr.Accordion("📙 Citation", open=False, elem_classes="accordion-label"):
|
| 121 |
+
gr.Textbox(
|
| 122 |
+
value=CITATION_TEXT,
|
| 123 |
+
lines=7,
|
| 124 |
+
label="Copy the BibTeX snippet to cite this source",
|
| 125 |
+
elem_id="citation-button",
|
| 126 |
+
show_copy_button=True)
|
| 127 |
+
# ).style(show_copy_button=True)
|
| 128 |
+
|
| 129 |
+
return demo
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def data_load(result_file):
|
| 134 |
+
global original_df
|
| 135 |
+
print(f"Loading {result_file}")
|
| 136 |
+
column_names_main = column_names.copy()
|
| 137 |
+
# column_names_main.update({})
|
| 138 |
+
main_ordered_columns = ORDERED_COLUMN_NAMES
|
| 139 |
+
click_url = True
|
| 140 |
+
# read json file from the result_file
|
| 141 |
+
with open(result_file, "r") as f:
|
| 142 |
+
data = json.load(f)
|
| 143 |
+
# floatify the data, if possible
|
| 144 |
+
for d in data:
|
| 145 |
+
for k, v in d.items():
|
| 146 |
+
try:
|
| 147 |
+
d[k] = float(v)
|
| 148 |
+
except:
|
| 149 |
+
pass
|
| 150 |
+
original_df = pd.DataFrame(data)
|
| 151 |
+
original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
|
| 152 |
+
# print(original_df.columns)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
if __name__ == "__main__":
|
| 156 |
+
parser = argparse.ArgumentParser()
|
| 157 |
+
parser.add_argument("--share", action="store_true")
|
| 158 |
+
parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/zebra-grid.summary.json")
|
| 159 |
+
|
| 160 |
+
args = parser.parse_args()
|
| 161 |
+
data_load(args.result_file)
|
| 162 |
+
print(original_df)
|
| 163 |
+
demo = build_demo()
|
| 164 |
+
demo.launch(share=args.share, height=3000, width="100%")
|
constants.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
|
| 4 |
+
DEFAULT_K = "∞"
|
| 5 |
+
# DEFAULT_K = "1500"
|
| 6 |
+
|
| 7 |
+
banner_url = "https://allenai.github.io/WildBench/gray_banner.png" # the same repo here.
|
| 8 |
+
BANNER = f'<div style="display: flex; justify-content: flex-start;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 800px;"> </div>'
|
| 9 |
+
|
| 10 |
+
TITLE = "<html> <head> <style> h1 {text-align: center;} </style> </head> <body> <h1> 🦁 AI2 WildBench Leaderboard </b> </body> </html>"
|
| 11 |
+
|
| 12 |
+
WINRATE_HEATMAP = "<div><img src='https://github.com/WildEval/WildBench-Leaderboard/blob/main/gradio/pairwise_win_fractions.png?raw=true' style='width:100%;'></div>"
|
| 13 |
+
|
| 14 |
+
CITATION_TEXT = """@misc{lin2024wildbench,
|
| 15 |
+
title={WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild},
|
| 16 |
+
author={Bill Yuchen Lin and Yuntian Deng and Khyathi Chandu and Faeze Brahman and Abhilasha Ravichander and Valentina Pyatkin and Nouha Dziri and Ronan Le Bras and Yejin Choi},
|
| 17 |
+
year={2024},
|
| 18 |
+
eprint={2406.04770},
|
| 19 |
+
archivePrefix={arXiv},
|
| 20 |
+
primaryClass={cs.CL},
|
| 21 |
+
url={https://arxiv.org/abs/2406.04770}
|
| 22 |
+
}
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
# make column_names as an ordered dict
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
column_names = OrderedDict({
|
| 30 |
+
"Model": "Model",
|
| 31 |
+
"Mode": "Mode",
|
| 32 |
+
"Puzzle Acc": "Puzzle Acc",
|
| 33 |
+
"Cell Acc": "Cell Acc",
|
| 34 |
+
"No answer": "No answer",
|
| 35 |
+
"Easy Puzzle Acc": "Easy Puzzle Acc",
|
| 36 |
+
"Hard Puzzle Acc": "Hard Puzzle Acc",
|
| 37 |
+
# "Total Puzzles": "Total Puzzles",
|
| 38 |
+
# "Reason Lens": "Reason Lens",
|
| 39 |
+
})
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
LEADERBOARD_REMARKS = """**WB Reward**: for each comparison (A vs B), a reward for A is **+/-1** if A is **much better/worse** than B, and **+/-0.5** if A is **slightly better/worse** than B; when there is a **Tie**, the reward is **0**.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
# **WB Reward**: for each pairwise comparison, a reward for A is **+/-1** if A is **much better/worse** than B, and **+/-0.5** if A is **slightly better/worse** than B; 0 for a **Tie**.
|
| 47 |
+
# The baseline models are GPT4-Turbo, Haiku, and Llama2-70B, and Mix is the average of the three.
|
| 48 |
+
# **WB Score** individually scores each model based on checklists.
|
| 49 |
+
# Evaluator is GPT-4-Turbo.
|
| 50 |
+
LEADERBOARD_REMARKS_MAIN = """
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
RANKING_COLUMN = "Puzzle Acc"
|
| 54 |
+
|
| 55 |
+
ORDERED_COLUMN_NAMES = [
|
| 56 |
+
"Model",
|
| 57 |
+
"Mode",
|
| 58 |
+
"Puzzle Acc",
|
| 59 |
+
"Easy Puzzle Acc",
|
| 60 |
+
"Hard Puzzle Acc",
|
| 61 |
+
"Cell Acc",
|
| 62 |
+
"No answer",
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
js_light = """
|
| 67 |
+
function refresh() {
|
| 68 |
+
const url = new URL(window.location);
|
| 69 |
+
|
| 70 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
| 71 |
+
url.searchParams.set('__theme', 'light');
|
| 72 |
+
window.location.href = url.href;
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
// Find the fieldset with the given id
|
| 76 |
+
const fieldset = document.getElementById("rank-column-radio");
|
| 77 |
+
|
| 78 |
+
// Create a new span element with the text "Rank by:"
|
| 79 |
+
const rankBySpan = document.createElement("span");
|
| 80 |
+
rankBySpan.textContent = "Rank by: ";
|
| 81 |
+
rankBySpan.style.fontWeight = "bold"; // Optional: make the text bold
|
| 82 |
+
rankBySpan.style.fontSize = "19px"; // Larger font size
|
| 83 |
+
rankBySpan.style.paddingRight = "18px"; // Add padding on the right
|
| 84 |
+
|
| 85 |
+
// Wrap the span and the labels in a flex container
|
| 86 |
+
const flexContainer = document.createElement("div");
|
| 87 |
+
flexContainer.style.display = "flex";
|
| 88 |
+
flexContainer.style.alignItems = "center";
|
| 89 |
+
|
| 90 |
+
// Insert the rankBySpan at the beginning of the flex container
|
| 91 |
+
flexContainer.appendChild(rankBySpan);
|
| 92 |
+
|
| 93 |
+
// Move all existing labels into the flex container
|
| 94 |
+
while (fieldset.firstChild) {
|
| 95 |
+
flexContainer.appendChild(fieldset.firstChild);
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
// Append the flex container back to the fieldset
|
| 99 |
+
fieldset.appendChild(flexContainer);
|
| 100 |
+
}
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
js_code = """
|
| 104 |
+
function scroll_top() {
|
| 105 |
+
console.log("Hello from Gradio!");
|
| 106 |
+
const bubbles = document.querySelectorAll('.bubble-wrap');
|
| 107 |
+
bubbles.forEach((bubble, index) => {
|
| 108 |
+
setTimeout(() => {
|
| 109 |
+
bubble.scrollTop = 0;
|
| 110 |
+
}, index * 100); // Delay of 100ms between each iteration
|
| 111 |
+
});
|
| 112 |
+
|
| 113 |
+
}
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
TASK_TYPE_STR = "**Tasks**: Info seeking (**InfoSek**), Creative Writing (**CrtWrt**), Coding&Debugging (**Code**), Reasoning (**Reason**), Editing (**Edit**), **Math**, Planning (**Plan**), Brainstorming (**Brnstrm**), Role playing (**RolPly**), Advice seeking (**AdvSek**), Data Analysis (**DataAna**)"
|
| 118 |
+
|
| 119 |
+
css = """
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
code {
|
| 124 |
+
font-size: large;
|
| 125 |
+
}
|
| 126 |
+
footer {visibility: hidden}
|
| 127 |
+
.top-left-LP{
|
| 128 |
+
margin-top: 6px;
|
| 129 |
+
margin-left: 5px;
|
| 130 |
+
}
|
| 131 |
+
.no_margin{
|
| 132 |
+
margin-top: 0px;
|
| 133 |
+
margin-left: 0px;
|
| 134 |
+
margin-right: 0px;
|
| 135 |
+
margin-bottom: 0px;
|
| 136 |
+
padding-top: 0px;
|
| 137 |
+
padding-left: 0px;
|
| 138 |
+
padding-right: 0px;
|
| 139 |
+
padding-bottom: 0px;
|
| 140 |
+
}
|
| 141 |
+
.markdown-text{font-size: 14pt}
|
| 142 |
+
.markdown-text-tiny{font-size: 10pt}
|
| 143 |
+
.markdown-text-small{font-size: 13pt}
|
| 144 |
+
.markdown-text-tiny{font-size: 12pt}
|
| 145 |
+
.markdown-text-tiny-red{
|
| 146 |
+
font-size: 12pt;
|
| 147 |
+
color: red;
|
| 148 |
+
background-color: yellow;
|
| 149 |
+
font-color: red;
|
| 150 |
+
font-weight: bold;
|
| 151 |
+
}
|
| 152 |
+
th {
|
| 153 |
+
text-align: center;
|
| 154 |
+
font-size: 17px; /* Adjust the font size as needed */
|
| 155 |
+
}
|
| 156 |
+
td {
|
| 157 |
+
font-size: 15px; /* Adjust the font size as needed */
|
| 158 |
+
text-align: center;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
.sample_button{
|
| 162 |
+
border: 2px solid #000000;
|
| 163 |
+
border-radius: 10px;
|
| 164 |
+
padding: 10px;
|
| 165 |
+
font-size: 17pt;
|
| 166 |
+
font-weight: bold;
|
| 167 |
+
margin: 5px;
|
| 168 |
+
background-color: #D8BFD8;
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
.chat-common{
|
| 172 |
+
height: auto;
|
| 173 |
+
max-height: 400px;
|
| 174 |
+
min-height: 100px;
|
| 175 |
+
}
|
| 176 |
+
.chat-specific{
|
| 177 |
+
height: auto;
|
| 178 |
+
max-height: 600px;
|
| 179 |
+
min-height: 200px;
|
| 180 |
+
}
|
| 181 |
+
#od-benchmark-tab-table-button{
|
| 182 |
+
font-size: 15pt;
|
| 183 |
+
font-weight: bold;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
.btn_boderline{
|
| 187 |
+
border: 1px solid #000000;
|
| 188 |
+
border-radius: 5px;
|
| 189 |
+
padding: 5px;
|
| 190 |
+
margin: 5px;
|
| 191 |
+
font-size: 15pt;
|
| 192 |
+
font-weight: bold;
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
.btn_boderline_next{
|
| 196 |
+
border: 0.1px solid #000000;
|
| 197 |
+
border-radius: 5px;
|
| 198 |
+
padding: 5px;
|
| 199 |
+
margin: 5px;
|
| 200 |
+
font-size: 15pt;
|
| 201 |
+
font-weight: bold;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
.btn_boderline_gray{
|
| 205 |
+
border: 0.5px solid gray;
|
| 206 |
+
border-radius: 5px;
|
| 207 |
+
padding: 5px;
|
| 208 |
+
margin: 5px;
|
| 209 |
+
font-size: 15pt;
|
| 210 |
+
font-weight: italic;
|
| 211 |
+
}
|
| 212 |
+
.btn_boderline_selected{
|
| 213 |
+
border: 2px solid purple;
|
| 214 |
+
background-color: #f2f2f2;
|
| 215 |
+
border-radius: 5px;
|
| 216 |
+
padding: 5px;
|
| 217 |
+
margin: 5px;
|
| 218 |
+
font-size: 15pt;
|
| 219 |
+
font-weight: bold;
|
| 220 |
+
}
|
| 221 |
+
.accordion-label button span{
|
| 222 |
+
font-size: 14pt;
|
| 223 |
+
font-weight: bold;
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
#show-task-categorized span{
|
| 227 |
+
font-size: 13pt;
|
| 228 |
+
font-weight: bold;
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
#show-open-source-models span{
|
| 232 |
+
font-size: 13pt;
|
| 233 |
+
font-weight: bold;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
#select-models span{
|
| 237 |
+
font-size: 10pt;
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
#select-tasks span{
|
| 241 |
+
font-size: 10pt;
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
.markdown-text-details{
|
| 246 |
+
margin: 10px;
|
| 247 |
+
padding: 10px;
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
button.selected[role="tab"][aria-selected="true"] {
|
| 252 |
+
font-size: 18px; /* or any other size you prefer */
|
| 253 |
+
font-weight: bold;
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
#od-benchmark-tab-table-ablation-button {
|
| 257 |
+
font-size: larger; /* Adjust the font size as needed */
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
.plotly-plot{
|
| 262 |
+
height: auto;
|
| 263 |
+
max-height: 600px;
|
| 264 |
+
min-height: 600px;
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
#length-margin-radio{
|
| 268 |
+
font-size: 10pt;
|
| 269 |
+
# padding: 0px;
|
| 270 |
+
# margin: 1px;
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
#show-task-categorized{
|
| 274 |
+
font-size: 12pt;
|
| 275 |
+
font-decoration: bold;
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
#show-open-source-models{
|
| 279 |
+
font-size: 12pt;
|
| 280 |
+
font-decoration: bold;
|
| 281 |
+
}
|
| 282 |
+
"""
|
| 283 |
+
|
data_utils.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset, Dataset
|
| 2 |
+
import os
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from datasets.utils.logging import disable_progress_bar
|
| 5 |
+
from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES
|
| 6 |
+
from utils_display import make_clickable_model
|
| 7 |
+
|
| 8 |
+
import random
|
| 9 |
+
disable_progress_bar()
|
| 10 |
+
import math
|
| 11 |
+
import json
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
id_to_data = None
|
| 16 |
+
model_len_info = None
|
| 17 |
+
bench_data = None
|
| 18 |
+
eval_results = None
|
| 19 |
+
score_eval_results = None
|
| 20 |
+
|
| 21 |
+
# Formats the columns
|
| 22 |
+
def formatter(x):
|
| 23 |
+
if type(x) is str:
|
| 24 |
+
x = x
|
| 25 |
+
else:
|
| 26 |
+
x = round(x, 1)
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True):
|
| 31 |
+
for col in df.columns:
|
| 32 |
+
if col == "Model" and click_url:
|
| 33 |
+
df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
|
| 34 |
+
else:
|
| 35 |
+
df[col] = df[col].apply(formatter) # For numerical values
|
| 36 |
+
if "Elo" in col:
|
| 37 |
+
df[col] = df[col].replace('-', np.nan).astype(float)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
df.rename(columns=column_names, inplace=True)
|
| 41 |
+
list_columns = [col for col in ordered_columns if col in df.columns]
|
| 42 |
+
df = df[list_columns]
|
| 43 |
+
if rank_column in df.columns:
|
| 44 |
+
df.sort_values(by=rank_column, inplace=True, ascending=False)
|
| 45 |
+
return df
|
| 46 |
+
|
init.py
ADDED
|
File without changes
|
model_info.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"Qwen2-72B-Instruct": {"pretty_name": "Qwen2-72B-Instruct", "hf_model_id": "Qwen/Qwen2-72B-Instruct"},
|
| 3 |
+
"Qwen2-7B-Instruct": {"pretty_name": "Qwen2-7B-Instruct", "hf_model_id": "Qwen/Qwen2-7B-Instruct"},
|
| 4 |
+
"Qwen1.5-72B-Chat-greedy": {"pretty_name": "Qwen1.5-72B-Chat", "hf_model_id": "Qwen/Qwen1.5-72B-Chat"},
|
| 5 |
+
"Qwen1.5-7B-Chat": {"pretty_name": "Qwen1.5-7B-Chat", "hf_model_id": "Qwen/Qwen1.5-7B-Chat"},
|
| 6 |
+
"Meta-Llama-3-8B-Instruct": {"pretty_name": "Llama-3-8B-Instruct", "hf_model_id": "meta-llama/Meta-Llama-3-8B-Instruct"},
|
| 7 |
+
"Meta-Llama-3-70B-Instruct": {"pretty_name": "Llama-3-70B-Instruct", "hf_model_id": "meta-llama/Meta-Llama-3-70B-Instruct"},
|
| 8 |
+
"Llama-2-13b-chat-hf": {"pretty_name": "Llama-2-13B-chat", "hf_model_id": "meta-llama/Llama-2-13b-chat-hf"},
|
| 9 |
+
"Llama-2-70b-chat-hf": {"pretty_name": "Llama-2-70B-chat", "hf_model_id": "meta-llama/Llama-2-70b-chat-hf"},
|
| 10 |
+
"Llama-2-7b-chat-hf": {"pretty_name": "Llama-2-7B-chat", "hf_model_id": "meta-llama/Llama-2-7b-chat-hf"},
|
| 11 |
+
"Mistral-7B-Instruct-v0.1": {"pretty_name": "Mistral-7B-Instruct", "hf_model_id": "mistralai/Mistral-7B-Instruct-v0.1"},
|
| 12 |
+
"Mistral-7B-Instruct-v0.2": {"pretty_name": "Mistral-7B-Instruct-v0.2", "hf_model_id": "mistralai/Mistral-7B-Instruct-v0.2"},
|
| 13 |
+
"Mixtral-8x7B-Instruct-v0.1": {"pretty_name": "Mixtral-8x7B-Instruct", "hf_model_id": "mistralai/Mixtral-8x7B-Instruct-v0.1"},
|
| 14 |
+
"command-r": {"pretty_name": "Command-R", "hf_model_id": "https://cohere.com/command"},
|
| 15 |
+
"command-r-plus": {"pretty_name": "Command-R-Plus", "hf_model_id": "https://cohere.com/command"},
|
| 16 |
+
"Phi-3-medium-128k-instruct": {"pretty_name": "Phi-3-medium-128k", "hf_model_id": "microsoft/Phi-3-medium-128k-instruct"},
|
| 17 |
+
"Phi-3-mini-128k-instruct": {"pretty_name": "Phi-3-mini-128k", "hf_model_id": "microsoft/Phi-3-mini-128k-instruct"},
|
| 18 |
+
"Nous-Hermes-2-Mixtral-8x7B-DPO": {"pretty_name": "Hermes-2-Mixtral-8x7B-DPO", "hf_model_id": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO"},
|
| 19 |
+
"Hermes-2-Theta-Llama-3-8B": {"pretty_name": "Hermes-2-Theta-Llama-3-8B", "hf_model_id": "NousResearch/Hermes-2-Theta-Llama-3-8B"},
|
| 20 |
+
"yi-large": {"pretty_name": "Yi-Large", "hf_model_id": "https://platform.01.ai/"},
|
| 21 |
+
"yi-large-preview": {"pretty_name": "Yi-Large-Preview", "hf_model_id": "https://platform.01.ai/"},
|
| 22 |
+
"Yi-1.5-34B-Chat": {"pretty_name": "Yi-1.5-34B-Chat", "hf_model_id": "01-ai/Yi-1.5-34B-Chat"},
|
| 23 |
+
"Yi-1.5-9B-Chat": {"pretty_name": "Yi-1.5-9B-Chat", "hf_model_id": "01-ai/Yi-1.5-9B-Chat"},
|
| 24 |
+
"Yi-1.5-6B-Chat": {"pretty_name": "Yi-1.5-6B-Chat", "hf_model_id": "01-ai/Yi-1.5-6B-Chat"},
|
| 25 |
+
"reka-flash-20240226": {"pretty_name": "Reka Flash", "hf_model_id": "https://www.reka.ai/"},
|
| 26 |
+
"reka-core-20240501": {"pretty_name": "Reka Core", "hf_model_id": "https://www.reka.ai/"},
|
| 27 |
+
"reka-edge": {"pretty_name": "Reka Edge", "hf_model_id": "https://www.reka.ai/"},
|
| 28 |
+
"gemini-1.5-pro": {"pretty_name": "Gemini 1.5 Pro", "hf_model_id": "https://blog.google/technology/ai/google-gemini-ai/"},
|
| 29 |
+
"gemini-1.5-flash": {"pretty_name": "Gemini 1.5 Flash", "hf_model_id": "https://blog.google/technology/ai/google-gemini-ai/"},
|
| 30 |
+
"gemma-7b-it": {"pretty_name": "Gemma-7B-it", "hf_model_id": "google/gemma-7b-it"},
|
| 31 |
+
"gemma-2b-it": {"pretty_name": "Gemma-2B-it", "hf_model_id": "google/gemma-2b-it"},
|
| 32 |
+
"gpt-3.5-turbo-0125": {"pretty_name": "gpt-3.5-turbo-0125", "hf_model_id": "https://platform.openai.com/"},
|
| 33 |
+
"gpt-4-0125-preview": {"pretty_name": "gpt-4-0125-preview", "hf_model_id": "https://platform.openai.com/"},
|
| 34 |
+
"gpt-4o-2024-05-13": {"pretty_name": "gpt-4o-2024-05-13", "hf_model_id": "https://platform.openai.com/"},
|
| 35 |
+
"gpt-4-turbo-2024-04-09": {"pretty_name": "gpt-4-turbo-2024-04-09", "hf_model_id": "https://platform.openai.com/"},
|
| 36 |
+
"gpt-4-0314": {"pretty_name": "gpt-4-0314", "hf_model_id": "https://platform.openai.com/"},
|
| 37 |
+
"tulu-2-dpo-70b": {"pretty_name": "Tulu-2-dpo-70b", "hf_model_id": "allenai/tulu-2-dpo-70b"},
|
| 38 |
+
"zephyr-7b-beta": {"pretty_name": "Zephyr-7b-beta", "hf_model_id": "HuggingFaceH4/zephyr-7b-beta"},
|
| 39 |
+
"mistral-large-2402": {"pretty_name": "Mistral-Large", "hf_model_id": "https://mistral.ai/news/mistral-large/"},
|
| 40 |
+
"claude-3-haiku-20240307": {"pretty_name": "Claude 3 Haiku", "hf_model_id": "https://www.anthropic.com/claude"},
|
| 41 |
+
"claude-3-opus-20240229": {"pretty_name": "Claude 3 Opus", "hf_model_id": "https://www.anthropic.com/claude"},
|
| 42 |
+
"claude-3-sonnet-20240229": {"pretty_name": "Claude 3 Sonnet", "hf_model_id": "https://www.anthropic.com/claude"},
|
| 43 |
+
"claude-3-5-sonnet-20240620": {"pretty_name": "Claude 3.5 Sonnet", "hf_model_id": "https://www.anthropic.com/claude"},
|
| 44 |
+
"Starling-LM-7B-beta": {"pretty_name": "StarlingLM-7B-beta", "hf_model_id": "Nexusflow/Starling-LM-7B-beta"},
|
| 45 |
+
"dbrx-instruct": {"pretty_name": "DBRX Instruct", "hf_model_id": "databricks/dbrx-instruct"},
|
| 46 |
+
"Llama-3-Instruct-8B-SimPO": {"pretty_name": "Llama3-Inst-8B-SimPO", "hf_model_id": "princeton-nlp/Llama-3-Instruct-8B-SimPO"},
|
| 47 |
+
"Llama-3-Instruct-8B-SimPO-ExPO": {"pretty_name": "Llama3-Inst-8B-SimPO-ExPO", "hf_model_id": "chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO"},
|
| 48 |
+
"Starling-LM-7B-beta-ExPO": {"pretty_name": "Starling-LM-7B-beta-ExPO", "hf_model_id": "chujiezheng/Starling-LM-7B-beta-ExPO"},
|
| 49 |
+
"SELM-Zephyr-7B-iter-3": {"pretty_name": "SELM (Zephyr-7B-iter3)", "hf_model_id": "ZhangShenao/SELM-Zephyr-7B-iter-3"},
|
| 50 |
+
"deepseekv2-chat": {"pretty_name": "DeepSeek-V2-Chat", "hf_model_id": "deepseek-ai/DeepSeek-V2-Chat"},
|
| 51 |
+
"deepseek-coder-v2": {"pretty_name": "DeepSeek-Coder-V2-Inst", "hf_model_id": "deepseek-ai/DeepSeek-Coder-V2-Instruct"},
|
| 52 |
+
"deepseek-chat": {"pretty_name": "DeepSeek-V2-Chat", "hf_model_id": "https://platform.deepseek.com/api-docs/api/deepseek-api/", "open": true},
|
| 53 |
+
"deepseek-coder": {"pretty_name": "DeepSeek-Coder-V2", "hf_model_id": "https://platform.deepseek.com/api-docs/api/deepseek-api/", "open": true},
|
| 54 |
+
"gemma-2-27b-it@nvidia": {"pretty_name": "Gemma-2-27B-it", "hf_model_id": "https://huggingface.co/google/gemma-2-27b-it"},
|
| 55 |
+
"gemma-2-9b-it@nvidia": {"pretty_name": "Gemma-2-9B-it", "hf_model_id": "https://huggingface.co/google/gemma-2-9b-it"},
|
| 56 |
+
"neo_7b_instruct_v0.1": {"pretty_name": "Neo-7B-Instruct", "hf_model_id": "m-a-p/neo_7b_instruct_v0.1"},
|
| 57 |
+
"Yi-34B-Chat": {"pretty_name": "Yi-34B-Chat", "hf_model_id": "01-ai/Yi-34B-chat"},
|
| 58 |
+
"vicuna-13b-v1.5": {"pretty_name": "Vicuna-13b-v1.5", "hf_model_id": "lmsys/vicuna-13b-v1.5"},
|
| 59 |
+
"zephyr-7b-gemma-v0.1": {"pretty_name": "Zephyr-7b-Gemma", "hf_model_id": "HuggingFaceH4/zephyr-7b-gemma-v0.1"},
|
| 60 |
+
"glm-4-9b-chat": {"pretty_name": "GLM-4-9B-Chat", "hf_model_id": "THUDM/glm-4-9b-chat"},
|
| 61 |
+
"neo_7b_instruct_v0.1-ExPO": {"pretty_name": "Neo-7B-Instruct-ExPO", "hf_model_id": "chujiezheng/neo_7b_instruct_v0.1-ExPO"},
|
| 62 |
+
"SELM-Llama-3-8B-Instruct-iter-3": {"pretty_name": "SELM (Llama3-8B-Inst-iter3)", "hf_model_id": "ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3"},
|
| 63 |
+
"nemotron-4-340b-instruct": {"pretty_name": "Nemotron-4-340B-Instruct", "hf_model_id": "nvidia/Nemotron-4-340B-Instruct"},
|
| 64 |
+
"Llama-3-8B-Magpie-Align-v0.1": {"pretty_name": "Magpie-8B-Align-v0.1", "hf_model_id": "Magpie-Align/Llama-3-8B-Magpie-Align-v0.1"}
|
| 65 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio[oauth]==4.19.2
|
| 2 |
+
datasets
|
| 3 |
+
toolz==0.12.1
|
| 4 |
+
plotly
|
style.css
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
body {
|
| 2 |
+
font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
|
| 3 |
+
}
|
| 4 |
+
|
| 5 |
+
h1 {
|
| 6 |
+
font-size: 16px;
|
| 7 |
+
margin-top: 0;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
p {
|
| 11 |
+
color: rgb(107, 114, 128);
|
| 12 |
+
font-size: 15px;
|
| 13 |
+
margin-bottom: 10px;
|
| 14 |
+
margin-top: 5px;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
.card {
|
| 18 |
+
max-width: 620px;
|
| 19 |
+
margin: 0 auto;
|
| 20 |
+
padding: 16px;
|
| 21 |
+
border: 1px solid lightgray;
|
| 22 |
+
border-radius: 16px;
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
.card p:last-child {
|
| 26 |
+
margin-bottom: 0;
|
| 27 |
+
}
|
themes.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
from typing import Iterable
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from gradio.themes.base import Base
|
| 5 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
class Seafoam(Base):
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
*,
|
| 12 |
+
primary_hue: colors.Color | str = colors.blue,
|
| 13 |
+
secondary_hue: colors.Color | str = colors.gray,
|
| 14 |
+
neutral_hue: colors.Color | str = colors.gray,
|
| 15 |
+
spacing_size: sizes.Size | str = sizes.spacing_md,
|
| 16 |
+
radius_size: sizes.Size | str = sizes.radius_md,
|
| 17 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 18 |
+
font: fonts.Font
|
| 19 |
+
| str
|
| 20 |
+
| Iterable[fonts.Font | str] = (
|
| 21 |
+
fonts.GoogleFont("Quicksand"),
|
| 22 |
+
"ui-sans-serif",
|
| 23 |
+
"sans-serif",
|
| 24 |
+
),
|
| 25 |
+
font_mono: fonts.Font
|
| 26 |
+
| str
|
| 27 |
+
| Iterable[fonts.Font | str] = (
|
| 28 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
| 29 |
+
"ui-monospace",
|
| 30 |
+
"monospace",
|
| 31 |
+
),
|
| 32 |
+
):
|
| 33 |
+
super().__init__(
|
| 34 |
+
primary_hue=primary_hue,
|
| 35 |
+
secondary_hue=secondary_hue,
|
| 36 |
+
neutral_hue=neutral_hue,
|
| 37 |
+
spacing_size=spacing_size,
|
| 38 |
+
radius_size=radius_size,
|
| 39 |
+
text_size=text_size,
|
| 40 |
+
font=font,
|
| 41 |
+
font_mono=font_mono,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
seafoam = Seafoam()
|
update_data.sh
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
TARGET_DIR="ZeroEval-main"
|
| 2 |
+
|
| 3 |
+
rm -r $TARGET_DIR
|
| 4 |
+
# Download the ZIP file
|
| 5 |
+
curl -L -o zeroeval.zip https://github.com/yuchenlin/ZeroEval/archive/refs/heads/main.zip
|
| 6 |
+
unzip zeroeval.zip
|
| 7 |
+
rm zeroeval.zip
|
| 8 |
+
|
| 9 |
+
#!/bin/bash
|
| 10 |
+
|
| 11 |
+
# Define the target directory and the exception folder
|
| 12 |
+
EXCEPTION_FOLDER="result_dirs"
|
| 13 |
+
|
| 14 |
+
# Ensure the target directory exists
|
| 15 |
+
if [ -d "$TARGET_DIR" ]; then
|
| 16 |
+
# Loop through each item in the target directory
|
| 17 |
+
for item in "$TARGET_DIR"/*; do
|
| 18 |
+
# Check if it is not the exception folder
|
| 19 |
+
if [ "$(basename "$item")" != "$EXCEPTION_FOLDER" ]; then
|
| 20 |
+
# Remove the item (file or directory)
|
| 21 |
+
rm -rf "$item"
|
| 22 |
+
echo "Removed: $item"
|
| 23 |
+
fi
|
| 24 |
+
done
|
| 25 |
+
else
|
| 26 |
+
echo "Target directory does not exist: $TARGET_DIR"
|
| 27 |
+
fi
|
| 28 |
+
|
| 29 |
+
# only keep the result_dirs/zebra-grid under result_dirs folder; remove all other sub-folders under result_dirs
|
| 30 |
+
# Remove all subdirectories in result_dirs except zebra-grid
|
| 31 |
+
find "$TARGET_DIR/result_dirs" -maxdepth 1 -type d ! -name 'zebra-grid' ! -name 'result_dirs' -exec rm -rf {} +
|
| 32 |
+
|
| 33 |
+
rm -rf $TARGET_DIR/.github
|
| 34 |
+
rm -rf $TARGET_DIR/.gitignore
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# tables
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# bash update_table.sh
|
update_table.sh
ADDED
|
File without changes
|
utils_display.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
with open("model_info.json", "r") as f:
|
| 4 |
+
model_info = json.load(f)
|
| 5 |
+
|
| 6 |
+
def make_clickable_model(model_name):
|
| 7 |
+
global model_info
|
| 8 |
+
modified_model_name = model_name
|
| 9 |
+
if model_name in model_info:
|
| 10 |
+
if model_info[model_name]["hf_model_id"].startswith("http"):
|
| 11 |
+
link = model_info[model_name]["hf_model_id"]
|
| 12 |
+
modified_model_name = f'🔒 <a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_info[model_name]["pretty_name"]}</a>'
|
| 13 |
+
else:
|
| 14 |
+
link = f"https://huggingface.co/{model_info[model_name]['hf_model_id']}"
|
| 15 |
+
modified_model_name = f'🔑 <a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_info[model_name]["pretty_name"]}</a>'
|
| 16 |
+
if "Neo-7B" in modified_model_name:
|
| 17 |
+
# models that are fully open source
|
| 18 |
+
modified_model_name = modified_model_name.replace("🔑", "💎🔑")
|
| 19 |
+
|
| 20 |
+
if "🚨</a>" in modified_model_name:
|
| 21 |
+
modified_model_name = modified_model_name.replace(' 🚨</a>', '</a> 🚨')
|
| 22 |
+
# if model_name in ["gpt-4-turbo-2024-04-09", "Llama-2-70b-chat-hf", "claude-3-haiku-20240307"]:
|
| 23 |
+
# modified_model_name = modified_model_name.replace('style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;"', 'style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted; font-weight: bold; background-color: var(--link-background-color);"')
|
| 24 |
+
return modified_model_name
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def styled_error(error):
|
| 28 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 29 |
+
|
| 30 |
+
def styled_warning(warn):
|
| 31 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 32 |
+
|
| 33 |
+
def styled_message(message):
|
| 34 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|