Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,11 @@ import os # For getting filename
|
|
9 |
import matplotlib
|
10 |
matplotlib.use('Agg')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
# --- Core BioPython and Plotting Functions ---
|
13 |
|
14 |
def simulate_digest_and_plot_gradio(plasmid_seq_record, enzyme_name, plasmid_label):
|
@@ -18,9 +23,16 @@ def simulate_digest_and_plot_gradio(plasmid_seq_record, enzyme_name, plasmid_lab
|
|
18 |
"""
|
19 |
fig, ax = plt.subplots(figsize=(6, 8)) # Adjusted size for better readability
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
-
|
23 |
-
enzyme = AllEnzymes.get(str(enzyme_name)) # Ensure enzyme_name is string
|
24 |
if not enzyme:
|
25 |
raise ValueError(f"Enzyme '{enzyme_name}' not found in Biopython's AllEnzymes.")
|
26 |
except Exception as e:
|
@@ -31,14 +43,10 @@ def simulate_digest_and_plot_gradio(plasmid_seq_record, enzyme_name, plasmid_lab
|
|
31 |
plt.tight_layout()
|
32 |
return fig
|
33 |
|
34 |
-
# Use enzyme.catalyse() to get fragments directly
|
35 |
fragments_seqs = enzyme.catalyse(plasmid_seq_record.seq)
|
36 |
|
37 |
is_uncut = False
|
38 |
if len(fragments_seqs) == 1 and len(fragments_seqs[0]) == len(plasmid_seq_record.seq):
|
39 |
-
# Further check: does the enzyme actually have sites?
|
40 |
-
# If catalyse returns the original sequence, it might be circular and cut once,
|
41 |
-
# or linear and uncut, or truly no sites.
|
42 |
if not enzyme.search(plasmid_seq_record.seq):
|
43 |
is_uncut = True
|
44 |
|
@@ -46,24 +54,20 @@ def simulate_digest_and_plot_gradio(plasmid_seq_record, enzyme_name, plasmid_lab
|
|
46 |
ax.text(0.5, 0.5, f"Enzyme {enzyme_name} does not cut {plasmid_label}",
|
47 |
ha='center', va='center', wrap=True)
|
48 |
ax.set_title(f"Virtual Gel: {plasmid_label} + {enzyme_name} (No Sites)", fontsize=10)
|
49 |
-
# Still show the uncut plasmid band
|
50 |
lengths = [len(plasmid_seq_record.seq)]
|
51 |
else:
|
52 |
lengths = sorted([len(f) for f in fragments_seqs], reverse=True)
|
53 |
|
54 |
ax.set_yscale("log")
|
55 |
-
|
56 |
-
|
57 |
-
plasmid_len_for_scale = max(len(plasmid_seq_record.seq), min_display_size * 10) # Ensure decent scale range
|
58 |
-
# Ensure max_display_size is greater than min_display_size
|
59 |
max_display_size = max(plasmid_len_for_scale * 1.1, min_display_size * 2)
|
60 |
-
|
61 |
ax.set_ylim(min_display_size, max_display_size)
|
62 |
|
63 |
band_width = 0.6
|
64 |
lane_center = 0.5
|
65 |
|
66 |
-
if not lengths:
|
67 |
ax.text(0.5, 0.5, "No fragments to display.", ha='center', va='center')
|
68 |
else:
|
69 |
for i, size in enumerate(lengths):
|
@@ -79,24 +83,20 @@ def simulate_digest_and_plot_gradio(plasmid_seq_record, enzyme_name, plasmid_lab
|
|
79 |
ax.invert_yaxis()
|
80 |
ax.set_title(f"Virtual Gel: {plasmid_label} digested with {enzyme_name}", fontsize=10)
|
81 |
ax.set_ylabel("Fragment Size (bp)", fontsize=9)
|
82 |
-
ax.set_xlabel("Lane 1", fontsize=9)
|
83 |
-
ax.set_xticks([])
|
84 |
ax.tick_params(axis='y', labelsize=8)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
# Draw well slightly above the max data point or at the very top
|
91 |
-
well_line_y = well_top_y * 1.01 # Position for the horizontal line of the well
|
92 |
-
well_depth_y = well_top_y * 0.98 # Bottom of the well sides (relative depth)
|
93 |
|
94 |
ax.plot([lane_center - band_width/1.5, lane_center + band_width/1.5], [well_line_y, well_line_y],
|
95 |
-
linewidth=1.5, color='black')
|
96 |
ax.plot([lane_center - band_width/1.5, lane_center - band_width/1.5], [well_line_y, well_depth_y],
|
97 |
-
linewidth=1.5, color='black')
|
98 |
ax.plot([lane_center + band_width/1.5, lane_center + band_width/1.5], [well_line_y, well_depth_y],
|
99 |
-
linewidth=1.5, color='black')
|
100 |
|
101 |
plt.tight_layout(pad=1.5)
|
102 |
return fig
|
@@ -108,23 +108,31 @@ def analyze_plasmids_gradio(file1_path, file2_path, current_plasmid_choice_for_p
|
|
108 |
and an update for the enzyme selection dropdown.
|
109 |
"""
|
110 |
initial_enzyme_dd_update = gr.update(choices=["Analyze plasmids first"], value="Analyze plasmids first", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
if file1_path is None or file2_path is None:
|
113 |
-
return "Error: Please upload both plasmid files.", "", "", None, None, [], [], initial_enzyme_dd_update
|
114 |
|
115 |
try:
|
116 |
-
# file_path is already a string (path to temp file) when type="filepath"
|
117 |
def read_plasmid(filepath, filename_for_error):
|
118 |
try:
|
119 |
return SeqIO.read(filepath, "genbank")
|
120 |
-
except Exception:
|
121 |
try:
|
122 |
return SeqIO.read(filepath, "fasta")
|
123 |
except Exception as e_fasta:
|
124 |
-
# More specific error message
|
125 |
raise ValueError(f"Could not parse '{filename_for_error}'. Ensure it's a valid GenBank or FASTA file. Last error: {e_fasta}")
|
126 |
|
127 |
-
# Get original filenames for messages
|
128 |
p1_orig_filename = os.path.basename(file1_path)
|
129 |
p2_orig_filename = os.path.basename(file2_path)
|
130 |
|
@@ -134,25 +142,19 @@ def analyze_plasmids_gradio(file1_path, file2_path, current_plasmid_choice_for_p
|
|
134 |
except Exception as e:
|
135 |
return str(e), "", "", None, None, [], [], initial_enzyme_dd_update
|
136 |
|
137 |
-
# Filter for valid enzymes from AllEnzymes
|
138 |
-
# Some entries in AllEnzymes might be None or lack necessary attributes
|
139 |
valid_enzyme_objects = []
|
140 |
-
for enz_name in AllEnzymes.elements():
|
141 |
enzyme_obj = AllEnzymes.get(enz_name)
|
142 |
if enzyme_obj and hasattr(enzyme_obj, 'site') and enzyme_obj.site is not None:
|
143 |
-
# Further check if it's a real enzyme, not a category like 'Commercial'
|
144 |
if hasattr(enzyme_obj, 'is_restriction') and enzyme_obj.is_restriction():
|
145 |
valid_enzyme_objects.append(enzyme_obj)
|
146 |
-
elif not hasattr(enzyme_obj, 'is_restriction'):
|
147 |
valid_enzyme_objects.append(enzyme_obj)
|
148 |
|
149 |
-
|
150 |
if not valid_enzyme_objects:
|
151 |
return "Error: Could not load any restriction enzymes from Biopython.", "", "", None, None, [], [], initial_enzyme_dd_update
|
152 |
|
153 |
enzymes_batch = RestrictionBatch(valid_enzyme_objects)
|
154 |
-
|
155 |
-
# Assuming circular plasmids, common for this type of analysis
|
156 |
analysis1 = Analysis(enzymes_batch, plasmid1_seq_rec.seq, linear=False)
|
157 |
analysis2 = Analysis(enzymes_batch, plasmid2_seq_rec.seq, linear=False)
|
158 |
|
@@ -175,12 +177,10 @@ def analyze_plasmids_gradio(file1_path, file2_path, current_plasmid_choice_for_p
|
|
175 |
if not unique_to_1_names and not unique_to_2_names:
|
176 |
status += " No enzymes found that uniquely cut only one of the plasmids."
|
177 |
|
178 |
-
# Determine initial choices for the enzyme dropdown based on current_plasmid_choice_for_plot
|
179 |
-
# current_plasmid_choice_for_plot is "Plasmid 1" or "Plasmid 2"
|
180 |
dd_choices = []
|
181 |
if current_plasmid_choice_for_plot == "Plasmid 1":
|
182 |
dd_choices = unique_to_1_names if unique_to_1_names else [f"No unique enzymes for {p1_display_label}"]
|
183 |
-
else:
|
184 |
dd_choices = unique_to_2_names if unique_to_2_names else [f"No unique enzymes for {p2_display_label}"]
|
185 |
|
186 |
if (current_plasmid_choice_for_plot == "Plasmid 1" and unique_to_1_names) or \
|
@@ -203,7 +203,6 @@ def plot_selected_digest_controller(plasmid_choice_label, enzyme_name, p1_data,
|
|
203 |
if not enzyme_name or enzyme_name == "Select an enzyme" or "No unique enzymes" in enzyme_name or "Analyze plasmids first" in enzyme_name:
|
204 |
ax_placeholder.clear()
|
205 |
ax_placeholder.text(0.5, 0.5, "Please select a valid plasmid and enzyme after analysis.", ha='center', va='center', wrap=True)
|
206 |
-
ax_placeholder.set_xticks([]); ax_placeholder.set_yticks([])
|
207 |
plt.tight_layout()
|
208 |
return fig_placeholder
|
209 |
|
@@ -214,53 +213,110 @@ def plot_selected_digest_controller(plasmid_choice_label, enzyme_name, p1_data,
|
|
214 |
if p1_data is None:
|
215 |
ax_placeholder.clear()
|
216 |
ax_placeholder.text(0.5, 0.5, "Plasmid 1 data not loaded. Please re-analyze.", ha='center', va='center', wrap=True, color='red')
|
217 |
-
ax_placeholder.set_xticks([]); ax_placeholder.set_yticks([])
|
218 |
plt.tight_layout()
|
219 |
return fig_placeholder
|
220 |
target_plasmid_rec = p1_data
|
221 |
target_label = "Plasmid 1"
|
222 |
if hasattr(p1_data, 'name') and p1_data.name: target_label += f" ({p1_data.name})"
|
223 |
elif hasattr(p1_data, 'id') and p1_data.id: target_label += f" ({p1_data.id})"
|
224 |
-
|
225 |
-
|
226 |
elif plasmid_choice_label == "Plasmid 2":
|
227 |
if p2_data is None:
|
228 |
ax_placeholder.clear()
|
229 |
ax_placeholder.text(0.5, 0.5, "Plasmid 2 data not loaded. Please re-analyze.", ha='center', va='center', wrap=True, color='red')
|
230 |
-
ax_placeholder.set_xticks([]); ax_placeholder.set_yticks([])
|
231 |
plt.tight_layout()
|
232 |
return fig_placeholder
|
233 |
target_plasmid_rec = p2_data
|
234 |
target_label = "Plasmid 2"
|
235 |
if hasattr(p2_data, 'name') and p2_data.name: target_label += f" ({p2_data.name})"
|
236 |
elif hasattr(p2_data, 'id') and p2_data.id: target_label += f" ({p2_data.id})"
|
237 |
-
|
238 |
-
else: # Should not happen
|
239 |
ax_placeholder.clear()
|
240 |
ax_placeholder.text(0.5, 0.5, "Invalid plasmid selection.", ha='center', va='center', wrap=True, color='red')
|
241 |
-
ax_placeholder.set_xticks([]); ax_placeholder.set_yticks([])
|
242 |
plt.tight_layout()
|
243 |
return fig_placeholder
|
244 |
|
245 |
return simulate_digest_and_plot_gradio(target_plasmid_rec, enzyme_name, target_label)
|
246 |
|
247 |
def update_enzyme_dropdown_choices_on_radio_change(plasmid_choice_label, p1_enzyme_names, p2_enzyme_names):
|
248 |
-
"""
|
249 |
-
Updates the enzyme dropdown choices when the plasmid selection radio button changes.
|
250 |
-
"""
|
251 |
if plasmid_choice_label == "Plasmid 1":
|
252 |
choices = p1_enzyme_names if p1_enzyme_names else ["No unique enzymes for P1"]
|
253 |
-
if p1_enzyme_names:
|
254 |
return gr.update(choices=["Select an enzyme"] + choices, value="Select an enzyme", interactive=True)
|
255 |
-
return gr.update(choices=choices, value=choices[0], interactive=False)
|
256 |
-
|
257 |
elif plasmid_choice_label == "Plasmid 2":
|
258 |
choices = p2_enzyme_names if p2_enzyme_names else ["No unique enzymes for P2"]
|
259 |
-
if p2_enzyme_names:
|
260 |
return gr.update(choices=["Select an enzyme"] + choices, value="Select an enzyme", interactive=True)
|
261 |
-
return gr.update(choices=choices, value=choices[0], interactive=False)
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
|
266 |
# --- Gradio Interface Definition ---
|
@@ -268,34 +324,33 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
268 |
gr.Markdown("# Plasmid Restriction Digest Analyzer & Virtual Gel")
|
269 |
gr.Markdown(
|
270 |
"**Instructions:**\n"
|
271 |
-
"1. Upload two plasmid sequence files (GenBank `.gb`/`.gbk` or FASTA `.fasta`/`.fna`/`.fa` format).\n"
|
272 |
-
"2.
|
273 |
"3. Select which plasmid's unique enzymes you want to consider for plotting.\n"
|
274 |
"4. Choose a specific enzyme from the dropdown list.\n"
|
275 |
-
"5. Click `Generate Gel Plot` to visualize the digestion pattern
|
|
|
276 |
)
|
277 |
|
278 |
-
# States to store full plasmid SeqRecord objects and lists of unique enzyme names
|
279 |
plasmid1_data_state = gr.State()
|
280 |
plasmid2_data_state = gr.State()
|
281 |
-
p1_unique_enzymes_list_state = gr.State([])
|
282 |
-
p2_unique_enzymes_list_state = gr.State([])
|
283 |
|
284 |
with gr.Row():
|
285 |
with gr.Column(scale=1):
|
286 |
gr.Markdown("### 1. Upload Plasmids & Analyze")
|
287 |
-
file_p1 = gr.File(label="Plasmid 1 File", type="filepath", file_types=[".gb", ".gbk", ".fasta", ".fna", ".fa"])
|
288 |
-
file_p2 = gr.File(label="Plasmid 2 File", type="filepath", file_types=[".gb", ".gbk", ".fasta", ".fna", ".fa"])
|
289 |
|
290 |
-
# Hidden component to pass the current plasmid choice to the analysis function
|
291 |
-
# This helps initialize the enzyme dropdown correctly after analysis
|
292 |
_current_plasmid_choice_for_plot_hidden = gr.Textbox(value="Plasmid 1", visible=False)
|
293 |
|
294 |
-
analyze_btn = gr.Button("Analyze Plasmids", variant="
|
|
|
295 |
|
296 |
with gr.Column(scale=2):
|
297 |
gr.Markdown("### Analysis Results")
|
298 |
-
status_message_txt = gr.Textbox(label="Status", interactive=False, lines=1, max_lines=
|
299 |
unique_enzymes_p1_txt = gr.Textbox(label="Enzymes cutting only Plasmid 1", interactive=False, lines=3, max_lines=6)
|
300 |
unique_enzymes_p2_txt = gr.Textbox(label="Enzymes cutting only Plasmid 2", interactive=False, lines=3, max_lines=6)
|
301 |
|
@@ -307,7 +362,7 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
307 |
plasmid_to_plot_choice_radio = gr.Radio(
|
308 |
choices=["Plasmid 1", "Plasmid 2"],
|
309 |
label="Select Plasmid for Gel Visualization",
|
310 |
-
value="Plasmid 1",
|
311 |
interactive=True
|
312 |
)
|
313 |
|
@@ -315,9 +370,9 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
315 |
label="Select Unique Enzyme",
|
316 |
choices=["Analyze plasmids first"],
|
317 |
value="Analyze plasmids first",
|
318 |
-
interactive=False
|
319 |
)
|
320 |
-
plot_btn = gr.Button("Generate Gel Plot", variant="
|
321 |
|
322 |
with gr.Column(scale=2):
|
323 |
gel_plot_output = gr.Plot(label="Virtual Agarose Gel")
|
@@ -326,40 +381,43 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
326 |
gr.Markdown("Developed using Biopython, Matplotlib, and Gradio.")
|
327 |
gr.Markdown("Note: Large plasmid files or complex analyses might take a few moments.")
|
328 |
|
329 |
-
|
330 |
# --- Event Handlers ---
|
331 |
-
|
332 |
-
# Update the hidden textbox when radio button changes
|
333 |
plasmid_to_plot_choice_radio.change(
|
334 |
fn=lambda x: x,
|
335 |
inputs=[plasmid_to_plot_choice_radio],
|
336 |
outputs=[_current_plasmid_choice_for_plot_hidden]
|
337 |
)
|
338 |
|
339 |
-
# When Analyze button is clicked:
|
340 |
analyze_btn.click(
|
341 |
fn=analyze_plasmids_gradio,
|
342 |
-
inputs=[file_p1, file_p2, _current_plasmid_choice_for_plot_hidden],
|
343 |
outputs=[
|
344 |
-
status_message_txt,
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
]
|
353 |
)
|
354 |
|
355 |
-
# When plasmid choice (Radio) changes AFTER analysis, update the enzyme dropdown:
|
356 |
plasmid_to_plot_choice_radio.change(
|
357 |
fn=update_enzyme_dropdown_choices_on_radio_change,
|
358 |
inputs=[plasmid_to_plot_choice_radio, p1_unique_enzymes_list_state, p2_unique_enzymes_list_state],
|
359 |
outputs=[enzyme_for_plot_dropdown]
|
360 |
)
|
361 |
|
362 |
-
# When Plot button is clicked:
|
363 |
plot_btn.click(
|
364 |
fn=plot_selected_digest_controller,
|
365 |
inputs=[plasmid_to_plot_choice_radio, enzyme_for_plot_dropdown, plasmid1_data_state, plasmid2_data_state],
|
@@ -367,4 +425,11 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
367 |
)
|
368 |
|
369 |
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
demo.launch()
|
|
|
9 |
import matplotlib
|
10 |
matplotlib.use('Agg')
|
11 |
|
12 |
+
# Define paths for example files
|
13 |
+
EXAMPLE_DIR = "eg_files"
|
14 |
+
EXAMPLE_PLASMID1_PATH = os.path.join(EXAMPLE_DIR, "plasmid1_example.gb")
|
15 |
+
EXAMPLE_PLASMID2_PATH = os.path.join(EXAMPLE_DIR, "plasmid2_example.gb")
|
16 |
+
|
17 |
# --- Core BioPython and Plotting Functions ---
|
18 |
|
19 |
def simulate_digest_and_plot_gradio(plasmid_seq_record, enzyme_name, plasmid_label):
|
|
|
23 |
"""
|
24 |
fig, ax = plt.subplots(figsize=(6, 8)) # Adjusted size for better readability
|
25 |
|
26 |
+
if plasmid_seq_record is None:
|
27 |
+
ax.text(0.5, 0.5, f"Error: Plasmid data for '{plasmid_label}' is missing.",
|
28 |
+
ha='center', va='center', wrap=True, color='red')
|
29 |
+
ax.set_xticks([]); ax.set_yticks([])
|
30 |
+
ax.set_title(f"Virtual Gel: {plasmid_label} - Error", fontsize=10)
|
31 |
+
plt.tight_layout()
|
32 |
+
return fig
|
33 |
+
|
34 |
try:
|
35 |
+
enzyme = AllEnzymes.get(str(enzyme_name))
|
|
|
36 |
if not enzyme:
|
37 |
raise ValueError(f"Enzyme '{enzyme_name}' not found in Biopython's AllEnzymes.")
|
38 |
except Exception as e:
|
|
|
43 |
plt.tight_layout()
|
44 |
return fig
|
45 |
|
|
|
46 |
fragments_seqs = enzyme.catalyse(plasmid_seq_record.seq)
|
47 |
|
48 |
is_uncut = False
|
49 |
if len(fragments_seqs) == 1 and len(fragments_seqs[0]) == len(plasmid_seq_record.seq):
|
|
|
|
|
|
|
50 |
if not enzyme.search(plasmid_seq_record.seq):
|
51 |
is_uncut = True
|
52 |
|
|
|
54 |
ax.text(0.5, 0.5, f"Enzyme {enzyme_name} does not cut {plasmid_label}",
|
55 |
ha='center', va='center', wrap=True)
|
56 |
ax.set_title(f"Virtual Gel: {plasmid_label} + {enzyme_name} (No Sites)", fontsize=10)
|
|
|
57 |
lengths = [len(plasmid_seq_record.seq)]
|
58 |
else:
|
59 |
lengths = sorted([len(f) for f in fragments_seqs], reverse=True)
|
60 |
|
61 |
ax.set_yscale("log")
|
62 |
+
min_display_size = 10
|
63 |
+
plasmid_len_for_scale = max(len(plasmid_seq_record.seq), min_display_size * 10)
|
|
|
|
|
64 |
max_display_size = max(plasmid_len_for_scale * 1.1, min_display_size * 2)
|
|
|
65 |
ax.set_ylim(min_display_size, max_display_size)
|
66 |
|
67 |
band_width = 0.6
|
68 |
lane_center = 0.5
|
69 |
|
70 |
+
if not lengths:
|
71 |
ax.text(0.5, 0.5, "No fragments to display.", ha='center', va='center')
|
72 |
else:
|
73 |
for i, size in enumerate(lengths):
|
|
|
83 |
ax.invert_yaxis()
|
84 |
ax.set_title(f"Virtual Gel: {plasmid_label} digested with {enzyme_name}", fontsize=10)
|
85 |
ax.set_ylabel("Fragment Size (bp)", fontsize=9)
|
86 |
+
ax.set_xlabel("Lane 1", fontsize=9)
|
87 |
+
ax.set_xticks([])
|
88 |
ax.tick_params(axis='y', labelsize=8)
|
89 |
|
90 |
+
well_top_y = ax.get_ylim()[0]
|
91 |
+
well_line_y = well_top_y * 1.01
|
92 |
+
well_depth_y = well_top_y * 0.98
|
|
|
|
|
|
|
|
|
93 |
|
94 |
ax.plot([lane_center - band_width/1.5, lane_center + band_width/1.5], [well_line_y, well_line_y],
|
95 |
+
linewidth=1.5, color='black')
|
96 |
ax.plot([lane_center - band_width/1.5, lane_center - band_width/1.5], [well_line_y, well_depth_y],
|
97 |
+
linewidth=1.5, color='black')
|
98 |
ax.plot([lane_center + band_width/1.5, lane_center + band_width/1.5], [well_line_y, well_depth_y],
|
99 |
+
linewidth=1.5, color='black')
|
100 |
|
101 |
plt.tight_layout(pad=1.5)
|
102 |
return fig
|
|
|
108 |
and an update for the enzyme selection dropdown.
|
109 |
"""
|
110 |
initial_enzyme_dd_update = gr.update(choices=["Analyze plasmids first"], value="Analyze plasmids first", interactive=False)
|
111 |
+
|
112 |
+
# Check if example files exist if paths match example paths
|
113 |
+
example_file_error_msg = ""
|
114 |
+
if file1_path == EXAMPLE_PLASMID1_PATH and not os.path.exists(EXAMPLE_PLASMID1_PATH):
|
115 |
+
example_file_error_msg += f"Example file not found: {EXAMPLE_PLASMID1_PATH}. Please create it in the '{EXAMPLE_DIR}' directory.\n"
|
116 |
+
if file2_path == EXAMPLE_PLASMID2_PATH and not os.path.exists(EXAMPLE_PLASMID2_PATH):
|
117 |
+
example_file_error_msg += f"Example file not found: {EXAMPLE_PLASMID2_PATH}. Please create it in the '{EXAMPLE_DIR}' directory.\n"
|
118 |
+
|
119 |
+
if example_file_error_msg:
|
120 |
+
return example_file_error_msg, "", "", None, None, [], [], initial_enzyme_dd_update
|
121 |
+
|
122 |
|
123 |
if file1_path is None or file2_path is None:
|
124 |
+
return "Error: Please upload or load both plasmid files.", "", "", None, None, [], [], initial_enzyme_dd_update
|
125 |
|
126 |
try:
|
|
|
127 |
def read_plasmid(filepath, filename_for_error):
|
128 |
try:
|
129 |
return SeqIO.read(filepath, "genbank")
|
130 |
+
except Exception:
|
131 |
try:
|
132 |
return SeqIO.read(filepath, "fasta")
|
133 |
except Exception as e_fasta:
|
|
|
134 |
raise ValueError(f"Could not parse '{filename_for_error}'. Ensure it's a valid GenBank or FASTA file. Last error: {e_fasta}")
|
135 |
|
|
|
136 |
p1_orig_filename = os.path.basename(file1_path)
|
137 |
p2_orig_filename = os.path.basename(file2_path)
|
138 |
|
|
|
142 |
except Exception as e:
|
143 |
return str(e), "", "", None, None, [], [], initial_enzyme_dd_update
|
144 |
|
|
|
|
|
145 |
valid_enzyme_objects = []
|
146 |
+
for enz_name in AllEnzymes.elements():
|
147 |
enzyme_obj = AllEnzymes.get(enz_name)
|
148 |
if enzyme_obj and hasattr(enzyme_obj, 'site') and enzyme_obj.site is not None:
|
|
|
149 |
if hasattr(enzyme_obj, 'is_restriction') and enzyme_obj.is_restriction():
|
150 |
valid_enzyme_objects.append(enzyme_obj)
|
151 |
+
elif not hasattr(enzyme_obj, 'is_restriction'):
|
152 |
valid_enzyme_objects.append(enzyme_obj)
|
153 |
|
|
|
154 |
if not valid_enzyme_objects:
|
155 |
return "Error: Could not load any restriction enzymes from Biopython.", "", "", None, None, [], [], initial_enzyme_dd_update
|
156 |
|
157 |
enzymes_batch = RestrictionBatch(valid_enzyme_objects)
|
|
|
|
|
158 |
analysis1 = Analysis(enzymes_batch, plasmid1_seq_rec.seq, linear=False)
|
159 |
analysis2 = Analysis(enzymes_batch, plasmid2_seq_rec.seq, linear=False)
|
160 |
|
|
|
177 |
if not unique_to_1_names and not unique_to_2_names:
|
178 |
status += " No enzymes found that uniquely cut only one of the plasmids."
|
179 |
|
|
|
|
|
180 |
dd_choices = []
|
181 |
if current_plasmid_choice_for_plot == "Plasmid 1":
|
182 |
dd_choices = unique_to_1_names if unique_to_1_names else [f"No unique enzymes for {p1_display_label}"]
|
183 |
+
else:
|
184 |
dd_choices = unique_to_2_names if unique_to_2_names else [f"No unique enzymes for {p2_display_label}"]
|
185 |
|
186 |
if (current_plasmid_choice_for_plot == "Plasmid 1" and unique_to_1_names) or \
|
|
|
203 |
if not enzyme_name or enzyme_name == "Select an enzyme" or "No unique enzymes" in enzyme_name or "Analyze plasmids first" in enzyme_name:
|
204 |
ax_placeholder.clear()
|
205 |
ax_placeholder.text(0.5, 0.5, "Please select a valid plasmid and enzyme after analysis.", ha='center', va='center', wrap=True)
|
|
|
206 |
plt.tight_layout()
|
207 |
return fig_placeholder
|
208 |
|
|
|
213 |
if p1_data is None:
|
214 |
ax_placeholder.clear()
|
215 |
ax_placeholder.text(0.5, 0.5, "Plasmid 1 data not loaded. Please re-analyze.", ha='center', va='center', wrap=True, color='red')
|
|
|
216 |
plt.tight_layout()
|
217 |
return fig_placeholder
|
218 |
target_plasmid_rec = p1_data
|
219 |
target_label = "Plasmid 1"
|
220 |
if hasattr(p1_data, 'name') and p1_data.name: target_label += f" ({p1_data.name})"
|
221 |
elif hasattr(p1_data, 'id') and p1_data.id: target_label += f" ({p1_data.id})"
|
|
|
|
|
222 |
elif plasmid_choice_label == "Plasmid 2":
|
223 |
if p2_data is None:
|
224 |
ax_placeholder.clear()
|
225 |
ax_placeholder.text(0.5, 0.5, "Plasmid 2 data not loaded. Please re-analyze.", ha='center', va='center', wrap=True, color='red')
|
|
|
226 |
plt.tight_layout()
|
227 |
return fig_placeholder
|
228 |
target_plasmid_rec = p2_data
|
229 |
target_label = "Plasmid 2"
|
230 |
if hasattr(p2_data, 'name') and p2_data.name: target_label += f" ({p2_data.name})"
|
231 |
elif hasattr(p2_data, 'id') and p2_data.id: target_label += f" ({p2_data.id})"
|
232 |
+
else:
|
|
|
233 |
ax_placeholder.clear()
|
234 |
ax_placeholder.text(0.5, 0.5, "Invalid plasmid selection.", ha='center', va='center', wrap=True, color='red')
|
|
|
235 |
plt.tight_layout()
|
236 |
return fig_placeholder
|
237 |
|
238 |
return simulate_digest_and_plot_gradio(target_plasmid_rec, enzyme_name, target_label)
|
239 |
|
240 |
def update_enzyme_dropdown_choices_on_radio_change(plasmid_choice_label, p1_enzyme_names, p2_enzyme_names):
|
|
|
|
|
|
|
241 |
if plasmid_choice_label == "Plasmid 1":
|
242 |
choices = p1_enzyme_names if p1_enzyme_names else ["No unique enzymes for P1"]
|
243 |
+
if p1_enzyme_names:
|
244 |
return gr.update(choices=["Select an enzyme"] + choices, value="Select an enzyme", interactive=True)
|
245 |
+
return gr.update(choices=choices, value=choices[0], interactive=False)
|
|
|
246 |
elif plasmid_choice_label == "Plasmid 2":
|
247 |
choices = p2_enzyme_names if p2_enzyme_names else ["No unique enzymes for P2"]
|
248 |
+
if p2_enzyme_names:
|
249 |
return gr.update(choices=["Select an enzyme"] + choices, value="Select an enzyme", interactive=True)
|
250 |
+
return gr.update(choices=choices, value=choices[0], interactive=False)
|
251 |
+
return gr.update(choices=[], value=None, interactive=False)
|
252 |
+
|
253 |
+
|
254 |
+
def load_examples_and_auto_process():
|
255 |
+
"""
|
256 |
+
Loads example files, triggers analysis, and then attempts to auto-plot.
|
257 |
+
"""
|
258 |
+
# Step 1: Perform analysis with example files
|
259 |
+
# Default to "Plasmid 1" for initial dropdown population logic within analyze_plasmids_gradio
|
260 |
+
status, msg1, msg2, p1_rec, p2_rec, p1_enz_names, p2_enz_names, enz_dd_update = \
|
261 |
+
analyze_plasmids_gradio(EXAMPLE_PLASMID1_PATH, EXAMPLE_PLASMID2_PATH, "Plasmid 1")
|
262 |
+
|
263 |
+
# If analysis failed (e.g., files not found), p1_rec or p2_rec might be None
|
264 |
+
if p1_rec is None or p2_rec is None :
|
265 |
+
# Create a placeholder plot for error
|
266 |
+
fig_error, ax_error = plt.subplots(figsize=(6,8))
|
267 |
+
ax_error.text(0.5, 0.5, "Error during example analysis.\nCheck file paths and content.", ha='center', va='center', color='red', wrap=True)
|
268 |
+
ax_error.set_xticks([]); ax_error.set_yticks([])
|
269 |
+
plt.tight_layout()
|
270 |
+
return status, msg1, msg2, p1_rec, p2_rec, p1_enz_names, p2_enz_names, \
|
271 |
+
gr.update(choices=["Error"], value="Error", interactive=False), \
|
272 |
+
gr.update(value="Plasmid 1"), fig_error # Default radio to P1, show error plot
|
273 |
+
|
274 |
+
# Step 2: Determine auto-plot parameters
|
275 |
+
auto_plot_plasmid_label = None
|
276 |
+
auto_plot_enzyme_name = None
|
277 |
+
auto_plot_plasmid_data = None
|
278 |
+
final_radio_choice = "Plasmid 1" # Default if P1 has unique enzymes
|
279 |
+
|
280 |
+
if p1_enz_names:
|
281 |
+
auto_plot_plasmid_label = "Plasmid 1"
|
282 |
+
auto_plot_enzyme_name = p1_enz_names[0]
|
283 |
+
auto_plot_plasmid_data = p1_rec
|
284 |
+
final_radio_choice = "Plasmid 1"
|
285 |
+
# Update enzyme dropdown for P1
|
286 |
+
enz_dd_update = gr.update(choices=["Select an enzyme"] + p1_enz_names, value=auto_plot_enzyme_name, interactive=True)
|
287 |
+
|
288 |
+
elif p2_enz_names:
|
289 |
+
auto_plot_plasmid_label = "Plasmid 2"
|
290 |
+
auto_plot_enzyme_name = p2_enz_names[0]
|
291 |
+
auto_plot_plasmid_data = p2_rec
|
292 |
+
final_radio_choice = "Plasmid 2"
|
293 |
+
# Update enzyme dropdown for P2
|
294 |
+
enz_dd_update = gr.update(choices=["Select an enzyme"] + p2_enz_names, value=auto_plot_enzyme_name, interactive=True)
|
295 |
+
else:
|
296 |
+
# No unique enzymes for auto-plotting, update dropdown to reflect current choice (P1 default)
|
297 |
+
if final_radio_choice == "Plasmid 1":
|
298 |
+
enz_dd_update = gr.update(choices=[f"No unique enzymes for Plasmid 1 ({os.path.basename(EXAMPLE_PLASMID1_PATH)})"], value=f"No unique enzymes for Plasmid 1 ({os.path.basename(EXAMPLE_PLASMID1_PATH)})", interactive=False)
|
299 |
+
# (No need to handle P2 here as P1 is checked first for default)
|
300 |
+
|
301 |
+
|
302 |
+
# Step 3: Generate plot if possible
|
303 |
+
if auto_plot_enzyme_name and auto_plot_plasmid_data:
|
304 |
+
gel_fig = simulate_digest_and_plot_gradio(auto_plot_plasmid_data, auto_plot_enzyme_name, auto_plot_plasmid_label)
|
305 |
+
else:
|
306 |
+
# Create a placeholder plot if no auto-plot target
|
307 |
+
fig_placeholder, ax_placeholder = plt.subplots(figsize=(6, 8))
|
308 |
+
ax_placeholder.text(0.5, 0.5, "No unique enzymes found for automatic plotting.", ha='center', va='center', wrap=True)
|
309 |
+
ax_placeholder.set_xticks([]); ax_placeholder.set_yticks([])
|
310 |
+
plt.tight_layout()
|
311 |
+
gel_fig = fig_placeholder
|
312 |
+
# Ensure dropdown reflects that no enzyme was selected for plotting
|
313 |
+
if not p1_enz_names and not p2_enz_names: # If truly no unique enzymes for either
|
314 |
+
enz_dd_update = gr.update(choices=["No unique enzymes found"], value="No unique enzymes found", interactive=False)
|
315 |
+
|
316 |
+
|
317 |
+
# Return all updates
|
318 |
+
return status, msg1, msg2, p1_rec, p2_rec, p1_enz_names, p2_enz_names, \
|
319 |
+
enz_dd_update, gr.update(value=final_radio_choice), gel_fig
|
320 |
|
321 |
|
322 |
# --- Gradio Interface Definition ---
|
|
|
324 |
gr.Markdown("# Plasmid Restriction Digest Analyzer & Virtual Gel")
|
325 |
gr.Markdown(
|
326 |
"**Instructions:**\n"
|
327 |
+
"1. Upload two plasmid sequence files (GenBank `.gb`/`.gbk` or FASTA `.fasta`/`.fna`/`.fa` format) OR click 'Load Example Files'.\n"
|
328 |
+
"2. If uploading manually, click `Analyze Plasmids`. Results will show enzymes that uniquely cut one plasmid but not the other.\n"
|
329 |
"3. Select which plasmid's unique enzymes you want to consider for plotting.\n"
|
330 |
"4. Choose a specific enzyme from the dropdown list.\n"
|
331 |
+
"5. Click `Generate Gel Plot` to visualize the digestion pattern.\n"
|
332 |
+
f"Note: For 'Load Example Files', ensure `plasmid1_example.gb` and `plasmid2_example.gb` are in a folder named `{EXAMPLE_DIR}` next to this script."
|
333 |
)
|
334 |
|
|
|
335 |
plasmid1_data_state = gr.State()
|
336 |
plasmid2_data_state = gr.State()
|
337 |
+
p1_unique_enzymes_list_state = gr.State([])
|
338 |
+
p2_unique_enzymes_list_state = gr.State([])
|
339 |
|
340 |
with gr.Row():
|
341 |
with gr.Column(scale=1):
|
342 |
gr.Markdown("### 1. Upload Plasmids & Analyze")
|
343 |
+
file_p1 = gr.File(label="Plasmid 1 File (e.g., .gb, .fasta)", type="filepath", file_types=[".gb", ".gbk", ".fasta", ".fna", ".fa"])
|
344 |
+
file_p2 = gr.File(label="Plasmid 2 File (e.g., .gb, .fasta)", type="filepath", file_types=[".gb", ".gbk", ".fasta", ".fna", ".fa"])
|
345 |
|
|
|
|
|
346 |
_current_plasmid_choice_for_plot_hidden = gr.Textbox(value="Plasmid 1", visible=False)
|
347 |
|
348 |
+
analyze_btn = gr.Button("Analyze Uploaded Plasmids", variant="secondary") # Changed variant
|
349 |
+
example_btn = gr.Button("Load Example Files & Auto-Analyze/Plot", variant="primary", elem_id="example_button")
|
350 |
|
351 |
with gr.Column(scale=2):
|
352 |
gr.Markdown("### Analysis Results")
|
353 |
+
status_message_txt = gr.Textbox(label="Status", interactive=False, lines=1, max_lines=3) # Increased max_lines for error messages
|
354 |
unique_enzymes_p1_txt = gr.Textbox(label="Enzymes cutting only Plasmid 1", interactive=False, lines=3, max_lines=6)
|
355 |
unique_enzymes_p2_txt = gr.Textbox(label="Enzymes cutting only Plasmid 2", interactive=False, lines=3, max_lines=6)
|
356 |
|
|
|
362 |
plasmid_to_plot_choice_radio = gr.Radio(
|
363 |
choices=["Plasmid 1", "Plasmid 2"],
|
364 |
label="Select Plasmid for Gel Visualization",
|
365 |
+
value="Plasmid 1",
|
366 |
interactive=True
|
367 |
)
|
368 |
|
|
|
370 |
label="Select Unique Enzyme",
|
371 |
choices=["Analyze plasmids first"],
|
372 |
value="Analyze plasmids first",
|
373 |
+
interactive=False
|
374 |
)
|
375 |
+
plot_btn = gr.Button("Generate Gel Plot for Selection", variant="secondary", elem_id="plot_button") # Changed variant
|
376 |
|
377 |
with gr.Column(scale=2):
|
378 |
gel_plot_output = gr.Plot(label="Virtual Agarose Gel")
|
|
|
381 |
gr.Markdown("Developed using Biopython, Matplotlib, and Gradio.")
|
382 |
gr.Markdown("Note: Large plasmid files or complex analyses might take a few moments.")
|
383 |
|
|
|
384 |
# --- Event Handlers ---
|
|
|
|
|
385 |
plasmid_to_plot_choice_radio.change(
|
386 |
fn=lambda x: x,
|
387 |
inputs=[plasmid_to_plot_choice_radio],
|
388 |
outputs=[_current_plasmid_choice_for_plot_hidden]
|
389 |
)
|
390 |
|
|
|
391 |
analyze_btn.click(
|
392 |
fn=analyze_plasmids_gradio,
|
393 |
+
inputs=[file_p1, file_p2, _current_plasmid_choice_for_plot_hidden],
|
394 |
outputs=[
|
395 |
+
status_message_txt, unique_enzymes_p1_txt, unique_enzymes_p2_txt,
|
396 |
+
plasmid1_data_state, plasmid2_data_state,
|
397 |
+
p1_unique_enzymes_list_state, p2_unique_enzymes_list_state,
|
398 |
+
enzyme_for_plot_dropdown
|
399 |
+
]
|
400 |
+
)
|
401 |
+
|
402 |
+
example_btn.click(
|
403 |
+
fn=load_examples_and_auto_process,
|
404 |
+
inputs=[], # No direct inputs, uses hardcoded paths
|
405 |
+
outputs=[
|
406 |
+
status_message_txt, unique_enzymes_p1_txt, unique_enzymes_p2_txt,
|
407 |
+
plasmid1_data_state, plasmid2_data_state,
|
408 |
+
p1_unique_enzymes_list_state, p2_unique_enzymes_list_state,
|
409 |
+
enzyme_for_plot_dropdown, # Update dropdown based on auto-selected enzyme
|
410 |
+
plasmid_to_plot_choice_radio, # Update radio based on auto-selected plasmid
|
411 |
+
gel_plot_output # Display the auto-generated plot
|
412 |
]
|
413 |
)
|
414 |
|
|
|
415 |
plasmid_to_plot_choice_radio.change(
|
416 |
fn=update_enzyme_dropdown_choices_on_radio_change,
|
417 |
inputs=[plasmid_to_plot_choice_radio, p1_unique_enzymes_list_state, p2_unique_enzymes_list_state],
|
418 |
outputs=[enzyme_for_plot_dropdown]
|
419 |
)
|
420 |
|
|
|
421 |
plot_btn.click(
|
422 |
fn=plot_selected_digest_controller,
|
423 |
inputs=[plasmid_to_plot_choice_radio, enzyme_for_plot_dropdown, plasmid1_data_state, plasmid2_data_state],
|
|
|
425 |
)
|
426 |
|
427 |
if __name__ == '__main__':
|
428 |
+
# Create eg_files directory if it doesn't exist (optional, good for local testing)
|
429 |
+
if not os.path.exists(EXAMPLE_DIR):
|
430 |
+
os.makedirs(EXAMPLE_DIR)
|
431 |
+
print(f"Created directory: {EXAMPLE_DIR}. Please add example plasmid files to it.")
|
432 |
+
# You might want to add a check here to see if files exist and guide the user
|
433 |
+
# For Hugging Face Spaces, you'd typically upload the eg_files directory with the files.
|
434 |
+
|
435 |
demo.launch()
|