Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,6 +29,11 @@ def get_quantization_config():
|
|
| 29 |
Falls back gracefully if bitsandbytes is not available.
|
| 30 |
"""
|
| 31 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# 8-bit quantization configuration - good balance of speed and quality
|
| 33 |
quantization_config = BitsAndBytesConfig(
|
| 34 |
load_in_8bit=True,
|
|
@@ -64,42 +69,43 @@ def load_optimized_models():
|
|
| 64 |
# Model names
|
| 65 |
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
else:
|
| 82 |
-
model_kwargs["device_map"] = None # For CPU
|
| 83 |
|
| 84 |
-
try:
|
| 85 |
# Masked LM Model
|
| 86 |
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
|
| 87 |
model_name,
|
| 88 |
**model_kwargs
|
| 89 |
)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
# Set model to evaluation mode for inference
|
| 92 |
fill_mask_model.eval()
|
| 93 |
|
| 94 |
-
# Create
|
| 95 |
-
|
| 96 |
-
pipeline_device = fill_mask_model.device.index if hasattr(fill_mask_model.device, 'type') and fill_mask_model.device.type == "cuda" else -1
|
| 97 |
|
| 98 |
fill_mask_pipeline = pipeline(
|
| 99 |
'fill-mask',
|
| 100 |
model=fill_mask_model,
|
| 101 |
tokenizer=fill_mask_tokenizer,
|
| 102 |
-
device=pipeline_device,
|
| 103 |
)
|
| 104 |
|
| 105 |
logger.info("Models loaded successfully with optimizations")
|
|
@@ -113,16 +119,31 @@ def load_optimized_models():
|
|
| 113 |
|
| 114 |
def load_standard_models(model_name):
|
| 115 |
"""Fallback standard model loading without quantization."""
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
# --- Memory Management Utilities ---
|
| 128 |
def clear_gpu_cache():
|
|
@@ -163,7 +184,7 @@ def get_image_with_highlight(mol, atomset=None, size=(300, 300)):
|
|
| 163 |
if atomset:
|
| 164 |
try:
|
| 165 |
valid_atomset = [int(a) for a in atomset]
|
| 166 |
-
except ValueError:
|
| 167 |
logger.warning(f"Invalid atom in atomset: {atomset}. Proceeding without highlighting problematic atoms.")
|
| 168 |
valid_atomset = [int(a) for a in atomset if str(a).isdigit()] # Filter out non-integers
|
| 169 |
|
|
@@ -230,7 +251,11 @@ def predict_and_visualize_masked_smiles(smiles_mask, substructure_smarts_highlig
|
|
| 230 |
"""
|
| 231 |
# Load models when needed
|
| 232 |
try:
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
except Exception as e:
|
| 235 |
st.error(f"Error loading models: {str(e)}")
|
| 236 |
return
|
|
|
|
| 29 |
Falls back gracefully if bitsandbytes is not available.
|
| 30 |
"""
|
| 31 |
try:
|
| 32 |
+
# Only use quantization on CUDA
|
| 33 |
+
if not torch.cuda.is_available():
|
| 34 |
+
logger.info("CUDA not available, skipping quantization")
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
# 8-bit quantization configuration - good balance of speed and quality
|
| 38 |
quantization_config = BitsAndBytesConfig(
|
| 39 |
load_in_8bit=True,
|
|
|
|
| 69 |
# Model names
|
| 70 |
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
| 71 |
|
| 72 |
+
try:
|
| 73 |
+
# Load tokenizer (doesn't need quantization)
|
| 74 |
+
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 75 |
|
| 76 |
+
# Load model with quantization if available
|
| 77 |
+
model_kwargs = {
|
| 78 |
+
"torch_dtype": torch_dtype,
|
| 79 |
+
}
|
| 80 |
|
| 81 |
+
if quantization_config is not None and torch.cuda.is_available():
|
| 82 |
+
model_kwargs["quantization_config"] = quantization_config
|
| 83 |
+
model_kwargs["device_map"] = "auto"
|
| 84 |
+
else:
|
| 85 |
+
# For CPU or non-quantized loading
|
| 86 |
+
model_kwargs["device_map"] = None
|
|
|
|
|
|
|
| 87 |
|
|
|
|
| 88 |
# Masked LM Model
|
| 89 |
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
|
| 90 |
model_name,
|
| 91 |
**model_kwargs
|
| 92 |
)
|
| 93 |
|
| 94 |
+
# Move to device if not using device_map
|
| 95 |
+
if model_kwargs["device_map"] is None and torch.cuda.is_available():
|
| 96 |
+
fill_mask_model.to(device)
|
| 97 |
+
|
| 98 |
# Set model to evaluation mode for inference
|
| 99 |
fill_mask_model.eval()
|
| 100 |
|
| 101 |
+
# Create pipeline with proper device handling
|
| 102 |
+
pipeline_device = 0 if torch.cuda.is_available() else -1
|
|
|
|
| 103 |
|
| 104 |
fill_mask_pipeline = pipeline(
|
| 105 |
'fill-mask',
|
| 106 |
model=fill_mask_model,
|
| 107 |
tokenizer=fill_mask_tokenizer,
|
| 108 |
+
device=pipeline_device,
|
| 109 |
)
|
| 110 |
|
| 111 |
logger.info("Models loaded successfully with optimizations")
|
|
|
|
| 119 |
|
| 120 |
def load_standard_models(model_name):
|
| 121 |
"""Fallback standard model loading without quantization."""
|
| 122 |
+
try:
|
| 123 |
+
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 124 |
+
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
|
| 125 |
+
model_name,
|
| 126 |
+
torch_dtype=torch.float32
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Determine device for standard loading
|
| 130 |
+
device_idx = 0 if torch.cuda.is_available() else -1
|
| 131 |
+
|
| 132 |
+
if torch.cuda.is_available():
|
| 133 |
+
fill_mask_model.to("cuda")
|
| 134 |
+
|
| 135 |
+
fill_mask_pipeline = pipeline(
|
| 136 |
+
'fill-mask',
|
| 137 |
+
model=fill_mask_model,
|
| 138 |
+
tokenizer=fill_mask_tokenizer,
|
| 139 |
+
device=device_idx
|
| 140 |
+
)
|
| 141 |
|
| 142 |
+
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
| 143 |
+
except Exception as e:
|
| 144 |
+
logger.error(f"Failed to load models: {e}")
|
| 145 |
+
st.error(f"Failed to load models: {e}")
|
| 146 |
+
return None, None, None
|
| 147 |
|
| 148 |
# --- Memory Management Utilities ---
|
| 149 |
def clear_gpu_cache():
|
|
|
|
| 184 |
if atomset:
|
| 185 |
try:
|
| 186 |
valid_atomset = [int(a) for a in atomset]
|
| 187 |
+
except (ValueError, TypeError):
|
| 188 |
logger.warning(f"Invalid atom in atomset: {atomset}. Proceeding without highlighting problematic atoms.")
|
| 189 |
valid_atomset = [int(a) for a in atomset if str(a).isdigit()] # Filter out non-integers
|
| 190 |
|
|
|
|
| 251 |
"""
|
| 252 |
# Load models when needed
|
| 253 |
try:
|
| 254 |
+
models = load_optimized_models()
|
| 255 |
+
if models[0] is None: # Check if loading failed
|
| 256 |
+
st.error("Failed to load models. Please check the logs.")
|
| 257 |
+
return
|
| 258 |
+
fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline = models
|
| 259 |
except Exception as e:
|
| 260 |
st.error(f"Error loading models: {str(e)}")
|
| 261 |
return
|