Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, RobertaModel, RobertaTokenizer
|
| 5 |
+
from rdkit import Chem
|
| 6 |
+
from rdkit.Chem import Draw, rdFMCS
|
| 7 |
+
from rdkit.Chem.Draw import MolToImage
|
| 8 |
+
from PIL importImage
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from bertviz import head_view
|
| 11 |
+
from IPython.core.display import HTML
|
| 12 |
+
import io
|
| 13 |
+
import base64
|
| 14 |
+
|
| 15 |
+
# --- Model and Tokenizer Loading ---
|
| 16 |
+
# Masked LM Model
|
| 17 |
+
fill_mask_model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
| 18 |
+
fill_mask_tokenizer = AutoTokenizer.from_pretrained(fill_mask_model_name)
|
| 19 |
+
fill_mask_model = AutoModelForMaskedLM.from_pretrained(fill_mask_model_name)
|
| 20 |
+
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer)
|
| 21 |
+
|
| 22 |
+
# Roberta Model for Attention
|
| 23 |
+
attention_model_name = 'seyonec/PubChem10M_SMILES_BPE_450k' # Can be same or different as needed
|
| 24 |
+
attention_model = RobertaModel.from_pretrained(attention_model_name, output_attentions=True)
|
| 25 |
+
attention_tokenizer = RobertaTokenizer.from_pretrained(attention_model_name)
|
| 26 |
+
|
| 27 |
+
# --- Helper Functions from Notebook (adapted) ---
|
| 28 |
+
def get_mol(smiles):
|
| 29 |
+
"""Converts SMILES to RDKit Mol object and Kekulizes it."""
|
| 30 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 31 |
+
if mol is None:
|
| 32 |
+
return None
|
| 33 |
+
try:
|
| 34 |
+
Chem.Kekulize(mol)
|
| 35 |
+
except: # Kekulization can fail for some structures
|
| 36 |
+
pass
|
| 37 |
+
return mol
|
| 38 |
+
|
| 39 |
+
def find_matches_one(mol, submol_smarts):
|
| 40 |
+
"""Finds all matching atoms for a SMARTS pattern in a molecule."""
|
| 41 |
+
if not mol or not submol_smarts:
|
| 42 |
+
return []
|
| 43 |
+
submol = Chem.MolFromSmarts(submol_smarts)
|
| 44 |
+
if not submol:
|
| 45 |
+
return []
|
| 46 |
+
matches = mol.GetSubstructMatches(submol)
|
| 47 |
+
return matches
|
| 48 |
+
|
| 49 |
+
def get_image_with_highlight(mol, atomset=None, size=(300, 300)):
|
| 50 |
+
"""Draws molecule with optional atom highlighting."""
|
| 51 |
+
if mol is None:
|
| 52 |
+
return None
|
| 53 |
+
highlight_color = (0, 1, 0, 0.5) # Green with some transparency
|
| 54 |
+
img = MolToImage(mol, size=size, fitImage=True,
|
| 55 |
+
highlightAtoms=atomset if atomset else [],
|
| 56 |
+
highlightAtomColors={i: highlight_color for i in atomset} if atomset else {})
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
+
# --- Gradio Interface Functions ---
|
| 60 |
+
|
| 61 |
+
def predict_and_visualize_masked_smiles(smiles_mask, substructure_smarts_highlight="CC=CC"):
|
| 62 |
+
"""
|
| 63 |
+
Predicts masked tokens in a SMILES string, shows scores, and visualizes molecules.
|
| 64 |
+
"""
|
| 65 |
+
if fill_mask_tokenizer.mask_token not in smiles_mask:
|
| 66 |
+
return pd.DataFrame(), [None]*5, "Error: Input SMILES must contain a mask token (e.g., <mask>)."
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
predictions = fill_mask_pipeline(smiles_mask, top_k=10) # Get more to filter for valid ones
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return pd.DataFrame(), [None]*5, f"Error during prediction: {str(e)}"
|
| 72 |
+
|
| 73 |
+
results_data = []
|
| 74 |
+
image_list = []
|
| 75 |
+
valid_predictions_count = 0
|
| 76 |
+
|
| 77 |
+
for pred in predictions:
|
| 78 |
+
if valid_predictions_count >= 5:
|
| 79 |
+
break
|
| 80 |
+
|
| 81 |
+
predicted_smiles = pred['sequence']
|
| 82 |
+
score = pred['score']
|
| 83 |
+
|
| 84 |
+
mol = get_mol(predicted_smiles)
|
| 85 |
+
if mol:
|
| 86 |
+
results_data.append({"Predicted SMILES": predicted_smiles, "Score": f"{score:.4f}"})
|
| 87 |
+
|
| 88 |
+
atom_matches = []
|
| 89 |
+
if substructure_smarts_highlight:
|
| 90 |
+
matches = find_matches_one(mol, substructure_smarts_highlight)
|
| 91 |
+
if matches:
|
| 92 |
+
atom_matches = list(matches[0]) # Highlight first match
|
| 93 |
+
|
| 94 |
+
img = get_image_with_highlight(mol, atomset=atom_matches)
|
| 95 |
+
image_list.append(img)
|
| 96 |
+
valid_predictions_count += 1
|
| 97 |
+
|
| 98 |
+
# Pad image_list if fewer than 5 valid predictions
|
| 99 |
+
while len(image_list) < 5:
|
| 100 |
+
image_list.append(None)
|
| 101 |
+
|
| 102 |
+
df_results = pd.DataFrame(results_data)
|
| 103 |
+
return df_results, image_list, "Prediction successful." if valid_predictions_count > 0 else "No valid molecules found for top predictions."
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def visualize_attention_bertviz(sentence_a, sentence_b):
|
| 107 |
+
"""
|
| 108 |
+
Generates and displays BertViz attention head view as HTML.
|
| 109 |
+
"""
|
| 110 |
+
if not sentence_a or not sentence_b:
|
| 111 |
+
return "Please provide two SMILES strings."
|
| 112 |
+
try:
|
| 113 |
+
inputs = attention_tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt', add_special_tokens=True)
|
| 114 |
+
input_ids = inputs['input_ids']
|
| 115 |
+
|
| 116 |
+
# Ensure model is in eval mode and no_grad for inference
|
| 117 |
+
attention_model.eval()
|
| 118 |
+
with torch.no_grad():
|
| 119 |
+
attention_outputs = attention_model(input_ids)
|
| 120 |
+
|
| 121 |
+
attention = attention_outputs[-1] # Last item in the tuple is attentions
|
| 122 |
+
input_id_list = input_ids[0].tolist()
|
| 123 |
+
tokens = attention_tokenizer.convert_ids_to_tokens(input_id_list)
|
| 124 |
+
|
| 125 |
+
html_object = head_view(attention, tokens, display_mode="light") # Use light mode for better Gradio compatibility
|
| 126 |
+
|
| 127 |
+
# Extract HTML string from the IPython.core.display.HTML object
|
| 128 |
+
html_string = html_object.data
|
| 129 |
+
|
| 130 |
+
# Embed JavaScript directly if needed, or ensure Gradio's HTML component handles it.
|
| 131 |
+
# BertViz often requires D3.js and jQuery. Gradio's HTML component might not execute all JS.
|
| 132 |
+
# For robustness, it's better if head_view produces self-contained HTML or if Gradio supports JS execution.
|
| 133 |
+
# A common workaround is to serve the HTML and use an iframe, or save to file and link.
|
| 134 |
+
# Here, we'll return the raw HTML string and let Gradio's gr.HTML handle it.
|
| 135 |
+
|
| 136 |
+
# Add D3 and jQuery CDN links to the HTML string for better rendering in Gradio
|
| 137 |
+
# This is a common workaround if Gradio's HTML component doesn't include these by default
|
| 138 |
+
# Note: This might still have limitations depending on Gradio's sandboxing.
|
| 139 |
+
html_with_deps = f"""
|
| 140 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.0/jquery.min.js"></script>
|
| 141 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.8/d3.min.js"></script>
|
| 142 |
+
{html_string}
|
| 143 |
+
"""
|
| 144 |
+
return html_with_deps
|
| 145 |
+
except Exception as e:
|
| 146 |
+
return f"Error generating attention visualization: {str(e)}"
|
| 147 |
+
|
| 148 |
+
def display_molecule_image(smiles_string):
|
| 149 |
+
"""
|
| 150 |
+
Displays a 2D image of a molecule from its SMILES string.
|
| 151 |
+
"""
|
| 152 |
+
if not smiles_string:
|
| 153 |
+
return None, "Please enter a SMILES string."
|
| 154 |
+
mol = get_mol(smiles_string)
|
| 155 |
+
if mol is None:
|
| 156 |
+
return None, "Invalid SMILES string."
|
| 157 |
+
img = MolToImage(mol, size=(400, 400), fitImage=True)
|
| 158 |
+
return img, "Molecule displayed."
|
| 159 |
+
|
| 160 |
+
# --- Gradio Interface Definition ---
|
| 161 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 162 |
+
gr.Markdown("# ChemBERTa SMILES Utilities Dashboard")
|
| 163 |
+
|
| 164 |
+
with gr.Tab("Masked SMILES Prediction"):
|
| 165 |
+
gr.Markdown("Enter a SMILES string with a `<mask>` token (e.g., `C1=CC=CC<mask>C1`) to predict possible completions.")
|
| 166 |
+
with gr.Row():
|
| 167 |
+
smiles_input_masked = gr.Textbox(label="SMILES String with Mask", value="C1=CC=CC<mask>C1")
|
| 168 |
+
substructure_input = gr.Textbox(label="Substructure to Highlight (SMARTS)", value="C=C")
|
| 169 |
+
predict_button_masked = gr.Button("Predict and Visualize")
|
| 170 |
+
|
| 171 |
+
status_masked = gr.Textbox(label="Status", interactive=False)
|
| 172 |
+
predictions_table = gr.DataFrame(label="Top Predictions & Scores")
|
| 173 |
+
|
| 174 |
+
gr.Markdown("### Predicted Molecule Visualizations (Top 5 Valid)")
|
| 175 |
+
with gr.Row():
|
| 176 |
+
img_out_1 = gr.Image(label="Prediction 1", type="pil", interactive=False)
|
| 177 |
+
img_out_2 = gr.Image(label="Prediction 2", type="pil", interactive=False)
|
| 178 |
+
img_out_3 = gr.Image(label="Prediction 3", type="pil", interactive=False)
|
| 179 |
+
img_out_4 = gr.Image(label="Prediction 4", type="pil", interactive=False)
|
| 180 |
+
img_out_5 = gr.Image(label="Prediction 5", type="pil", interactive=False)
|
| 181 |
+
|
| 182 |
+
# Automatically populate on load for the default example
|
| 183 |
+
demo.load(
|
| 184 |
+
lambda: predict_and_visualize_masked_smiles("C1=CC=CC<mask>C1", "C=C"),
|
| 185 |
+
inputs=None,
|
| 186 |
+
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
|
| 187 |
+
)
|
| 188 |
+
predict_button_masked.click(
|
| 189 |
+
predict_and_visualize_masked_smiles,
|
| 190 |
+
inputs=[smiles_input_masked, substructure_input],
|
| 191 |
+
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with gr.Tab("Attention Visualization"):
|
| 195 |
+
gr.Markdown("Enter two SMILES strings to visualize attention between them using BertViz. This may take a moment to render.")
|
| 196 |
+
with gr.Row():
|
| 197 |
+
smiles_a_input_attn = gr.Textbox(label="SMILES String A", value="CCCCC[C@@H](Br)CC")
|
| 198 |
+
smiles_b_input_attn = gr.Textbox(label="SMILES String B", value="CCCCC[C@H](Br)CC")
|
| 199 |
+
visualize_button_attn = gr.Button("Visualize Attention")
|
| 200 |
+
attention_html_output = gr.HTML(label="Attention Head View")
|
| 201 |
+
|
| 202 |
+
# Automatically populate on load for the default example
|
| 203 |
+
demo.load(
|
| 204 |
+
lambda: visualize_attention_bertviz("CCCCC[C@@H](Br)CC", "CCCCC[C@H](Br)CC"),
|
| 205 |
+
inputs=None,
|
| 206 |
+
outputs=[attention_html_output]
|
| 207 |
+
)
|
| 208 |
+
visualize_button_attn.click(
|
| 209 |
+
visualize_attention_bertviz,
|
| 210 |
+
inputs=[smiles_a_input_attn, smiles_b_input_attn],
|
| 211 |
+
outputs=[attention_html_output]
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
with gr.Tab("Molecule Viewer"):
|
| 215 |
+
gr.Markdown("Enter a SMILES string to display its 2D structure.")
|
| 216 |
+
smiles_input_viewer = gr.Textbox(label="SMILES String", value="C1=CC=CC=C1")
|
| 217 |
+
view_button_molecule = gr.Button("View Molecule")
|
| 218 |
+
status_viewer = gr.Textbox(label="Status", interactive=False)
|
| 219 |
+
molecule_image_output = gr.Image(label="Molecule Structure", type="pil", interactive=False)
|
| 220 |
+
|
| 221 |
+
# Automatically populate on load for the default example
|
| 222 |
+
demo.load(
|
| 223 |
+
lambda: display_molecule_image("C1=CC=CC=C1"),
|
| 224 |
+
inputs=None,
|
| 225 |
+
outputs=[molecule_image_output, status_viewer]
|
| 226 |
+
)
|
| 227 |
+
view_button_molecule.click(
|
| 228 |
+
display_molecule_image,
|
| 229 |
+
inputs=[smiles_input_viewer],
|
| 230 |
+
outputs=[molecule_image_output, status_viewer]
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
demo.launch()
|