mol-lang-lab / app.py
alidenewade's picture
Update app.py
3752899 verified
raw
history blame
13.7 kB
import streamlit as st
import pandas as pd
from rdkit import Chem
from rdkit.Chem import Draw, AllChem
from rdkit.Chem.Draw import rdMolDraw2D
import py3Dmol
import io
import base64
import logging
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, BitsAndBytesConfig
# Set up logging to monitor quantization effects
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Page Configuration ---
st.set_page_config(
page_title="Molecule Explorer & Predictor",
page_icon="πŸ”¬",
layout="wide",
initial_sidebar_state="collapsed",
)
# Custom CSS for a professional, minimalist look (adapted from drug_app.txt)
def apply_custom_styling():
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
html, body, [class*="st-"] {
font-family: 'Roboto', sans-serif;
}
.stApp {
background-color: rgb(28, 28, 28);
color: white;
}
/* Tab styles */
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background: none;
border-radius: 0px;
border-bottom: 2px solid #333;
padding: 10px 4px;
color: #AAA;
}
.stTabs [data-baseweb="tab"]:hover {
background: #222;
color: #FFF;
}
.stTabs [aria-selected="true"] {
border-bottom: 2px solid #00A0FF; /* Highlight color for active tab */
color: #FFF;
}
/* Button styles */
.stButton>button {
border-color: #00A0FF;
color: #00A0FF;
}
.stButton>button:hover {
border-color: #FFF;
color: #FFF;
background-color: #00A0FF;
}
</style>
""",
unsafe_allow_html=True
)
apply_custom_styling()
# --- Quantization Configuration ---
def get_quantization_config():
"""
Configure 8-bit quantization for model optimization.
Falls back gracefully if bitsandbytes is not available.
"""
try:
# 8-bit quantization configuration - good balance of speed and quality
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_compute_dtype=torch.float16,
bnb_8bit_use_double_quant=True, # Nested quantization for better compression
)
logger.info("8-bit quantization configuration loaded successfully")
return quantization_config
except ImportError:
logger.warning("bitsandbytes not available, falling back to standard loading")
return None
except Exception as e:
logger.warning(f"Quantization setup failed: {e}, using standard loading")
return None
def get_torch_dtype():
"""Get appropriate torch dtype based on available hardware."""
if torch.cuda.is_available():
return torch.float16 # Use half precision on GPU
else:
return torch.float32 # Keep full precision on CPU
# --- Optimized Model Loading with Streamlit Caching ---
@st.cache_resource(show_spinner="Loading molecular language model...")
def load_optimized_models():
"""Load models with quantization and other optimizations using Streamlit caching."""
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = get_torch_dtype()
quantization_config = get_quantization_config()
logger.info(f"Loading models on device: {device} with dtype: {torch_dtype}")
# Model names
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
# Load tokenizer
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model with quantization if available
model_kwargs = {
"torch_dtype": torch_dtype,
}
if quantization_config is not None and torch.cuda.is_available(): # Quantization typically for GPU
model_kwargs["quantization_config"] = quantization_config
model_kwargs["device_map"] = "auto"
elif torch.cuda.is_available():
model_kwargs["device_map"] = "auto" # For non-quantized GPU loading
else:
model_kwargs["device_map"] = None # For CPU
try:
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
model_name,
**model_kwargs
)
fill_mask_model.eval()
pipeline_device = fill_mask_model.device.index if hasattr(fill_mask_model.device, 'type') and fill_mask_model.device.type == "cuda" else -1
fill_mask_pipeline = pipeline(
'fill-mask',
model=fill_mask_model,
tokenizer=fill_mask_tokenizer,
device=pipeline_device,
)
logger.info("Models loaded successfully with optimizations")
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
except Exception as e:
logger.error(f"Error loading optimized models: {e}")
logger.info("Falling back to standard model loading...")
return load_standard_models(model_name)
@st.cache_resource(show_spinner="Loading standard molecular language model...")
def load_standard_models(model_name="seyonec/PubChem10M_SMILES_BPE_450k"):
"""Fallback standard model loading without quantization using Streamlit caching."""
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
fill_mask_model = AutoModelForMaskedLM.from_pretrained(model_name)
device_idx = 0 if torch.cuda.is_available() else -1
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer, device=device_idx)
if torch.cuda.is_available():
fill_mask_model.to("cuda")
logger.info("Standard models loaded successfully")
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
# --- RDKit and Py3Dmol Visualization Functions ---
def mol_to_svg(mol, size=(400, 300)):
"""Converts an RDKit molecule object to an SVG image string using default RDKit colors."""
if not mol:
return None
drawer = rdMolDraw2D.MolDraw2DSVG(*size)
# Removing custom color settings as per user request to use default RDKit colors
# drawer.drawOptions().clearBackground = False # Keep background transparent/dark
# drawer.drawOptions().addStereoAnnotation = True
# drawer.drawOptions().baseFontSize = 0.8
# # Set dark theme colors for RDKit drawing - REMOVED AS PER USER REQUEST
# atom_colors = {
# 6: (0.8, 0.8, 0.8), # Carbon (light gray)
# 7: (0.2, 0.5, 1.0), # Nitrogen (blue)
# 8: (1.0, 0.2, 0.2), # Oxygen (red)
# 9: (0.2, 0.8, 0.2), # Fluorine (green)
# 15: (1.0, 0.5, 0.0), # Phosphorus (orange)
# 16: (1.0, 0.8, 0.0), # Sulfur (yellow)
# 17: (0.2, 0.7, 0.2), # Chlorine (dark green)
# 35: (0.5, 0.2, 0.8), # Bromine (purple)
# 53: (0.8, 0.2, 0.5), # Iodine (pink/magenta)
# }
# # Set default atom color
# drawer.drawOptions().setAtomColor(Chem.rdatomicnumlist.Get): (0.8, 0.8, 0.8) # Default to light gray for unknown atoms
# for atom_num, color in atom_colors.items():
# drawer.drawOptions().setAtomColor(atom_num, color)
# drawer.drawOptions().bondColor = (0.7, 0.7, 0.7) # Bond color (medium gray)
# drawer.drawOptions().highlightColour = (0.2, 0.6, 1.0) # Highlight color (blue)
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
svg = drawer.GetDrawingText()
return svg
def mol_to_sdf(mol):
"""Converts an RDKit molecule object to an SDF string."""
if not mol:
return None
# Add hydrogens to the molecule
mol_with_h = Chem.AddHs(mol)
# Generate 3D coordinates using ETKDGv3, a common conformer generation method
# MaxAttempts is increased for robustness, randomSeed for reproducibility
try:
AllChem.EmbedMolecule(mol_with_h, AllChem.ETKDGv3(), maxAttempts=50, randomSeed=42)
# Optimize 3D coordinates using Universal Force Field (UFF)
AllChem.UFFOptimizeMolecule(mol_with_h)
sdf_string = Chem.MolToMolBlock(mol_with_h)
return sdf_string
except Exception as e:
logger.error(f"Error generating 3D coordinates for SMILES: {Chem.MolToSmiles(mol)} - {e}")
return None
def visualize_molecule_3d(mol_sdf: str, width='100%', height=400):
"""
Generates an interactive 3D molecule visualization using py3Dmol.
Accepts an SDF string.
"""
if not mol_sdf:
return None
try:
viewer = py3Dmol.view(width=width, height=height)
viewer.setBackgroundColor('#1C1C1C') # Dark background
viewer.addModel(mol_sdf, "sdf")
viewer.setStyle({'stick':{}, 'sphere':{'radius':0.3}}) # Stick and Sphere representation
viewer.zoomTo()
html_view = viewer._make_html()
return html_view
except Exception as e:
st.error(f"Error generating 3D visualization: {e}")
return None
# --- Main Streamlit Application Layout ---
st.title("πŸ”¬ Molecule Explorer & Predictor")
# Initialize session state for consistent data across reruns
if 'tokenizer' not in st.session_state:
st.session_state.tokenizer, st.session_state.model, st.session_state.pipeline = load_optimized_models()
tokenizer = st.session_state.tokenizer
model = st.session_state.model
fill_mask_pipeline = st.session_state.pipeline
tab1, tab2 = st.tabs(["Molecule Viewer (2D & 3D)", "Masked SMILES Predictor"])
with tab1:
st.header("Visualize Molecules in 2D and 3D")
smiles_input = st.text_input("Enter SMILES string:", "CCO", help="e.g., CCO (ethanol), C1=CC=CC=C1 (benzene)")
if st.button("View Molecule"):
if smiles_input:
mol = Chem.MolFromSmiles(smiles_input)
if mol:
st.subheader("2D Structure")
svg = mol_to_svg(mol)
if svg:
st.image(svg, use_column_width=True)
else:
st.warning("Could not generate 2D image.")
st.subheader("3D Structure (Interactive)")
sdf_string = mol_to_sdf(mol)
if sdf_string:
html_3d = visualize_molecule_3d(sdf_string)
if html_3d:
st.components.v1.html(html_3d, width=700, height=500, scrolling=False)
else:
st.warning("Could not generate 3D visualization.")
else:
st.warning("Could not generate 3D SDF data.")
else:
st.error("Invalid SMILES string. Please enter a valid chemical structure.")
else:
st.info("Please enter a SMILES string to view the molecule.")
with tab2:
st.header("Masked SMILES Prediction")
masked_smiles_input = st.text_input(
"Enter masked SMILES string (use `<mask>` for the masked token):",
"C1=CC=CC<mask>C1",
help="Example: 'C1=CC=CC<mask>C1' (masked benzene), 'CCO<mask>C' (masked ether)"
)
top_k_predictions = st.slider("Number of predictions to show:", 1, 10, 5)
if st.button("Predict Masked Token"):
if masked_smiles_input and "<mask>" in masked_smiles_input:
try:
# Perform prediction using the loaded pipeline
predictions = fill_mask_pipeline(masked_smiles_input, top_k=top_k_predictions)
prediction_data = []
for pred in predictions:
token_str = pred['token_str']
sequence = pred['sequence']
score = pred['score']
mol = Chem.MolFromSmiles(sequence)
img_svg = None
if mol:
img_svg = mol_to_svg(mol, size=(200,150)) # Smaller image for table
prediction_data.append({
"Predicted Token": token_str,
"Full SMILES": sequence,
"Confidence Score": f"{score:.4f}",
"Structure SVG": img_svg # Store SVG string
})
df_predictions = pd.DataFrame(prediction_data)
st.subheader("Predictions:")
# Create a version of the dataframe without the SVG for initial display
display_df = df_predictions.drop(columns=["Structure SVG"])
st.dataframe(display_df, use_container_width=True, hide_index=True)
st.subheader("Predicted Structures:")
# Determine the number of columns based on the number of predictions, up to a max
num_cols = min(len(df_predictions), 5) # Display up to 5 images per row
cols = st.columns(num_cols)
for i, row in df_predictions.iterrows():
with cols[i % num_cols]: # Distribute images into columns
st.markdown(f"**{row['Predicted Token']}** (Score: {row['Confidence Score']})")
if row['Structure SVG']:
st.image(row['Structure SVG'], use_column_width='auto')
else:
st.write("*(Invalid SMILES)*")
except Exception as e:
st.error(f"An error occurred during prediction: {e}")
st.info("Please ensure your masked SMILES is valid and contains `<mask>`.")
else:
st.info("Please enter a masked SMILES string (e.g., `C1=CC=CC<mask>C1`).")