import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression import gradio as gr # Define the mapping between user-friendly names and NASA variable names data_mapping = { "Temperature": { "Earth Skin Temperature": "TS", "Temperature at 2 Meters": "T2M", "Wet Bulb Temperature at 2 Meters": "T2MWET" }, "Moisture & Precipitation": { "Precipitation Average": "PRECTOTCORR", "Profile Soil Moisture (surface to bedrock)": "GWETPROF", "Root Zone Soil Wetness (surface to 100 cm below)": "GWETROOT", "Surface Soil Wetness (surface to 5 cm below)": "GWETTOP" }, "Air & Pressure": { "Specific Humidity at 2 Meters": "QV2M", "Surface Pressure": "PS" }, "Wind": { "Wind Direction at 10 Meters": "WD10M", "Wind Direction at 2 Meters": "WD2M", "Wind Speed at 10 Meters": "WS10M", "Wind Speed at 2 Meters": "WS2M" } } def load_and_prepare_data(): data = pd.read_csv('data/preprocessed_data.csv') nasa_features = [var for category in data_mapping.values() for var in category.values()] target = 'Close_^FTSE' X = data[nasa_features] y = data[target] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=False) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) return X_train_scaled, X_test_scaled, y_train, y_test, scaler, nasa_features, data def train_model(X_train_scaled, y_train): model = LinearRegression() model.fit(X_train_scaled, y_train) return model def create_prediction_interface(model, scaler, features_mapping, data): def predict_func(*args): input_values = pd.DataFrame([args], columns=nasa_features) input_values_scaled = scaler.transform(input_values) prediction = model.predict(input_values_scaled) return f"${round(prediction[0], 2)} USD" with gr.Blocks(theme=gr.themes.Default()) as demo: gr.Markdown("### Stock Price Prediction") gr.Markdown("Adjust NASA POWER DAS variables to see predicted stock prices.") with gr.Row(): with gr.Column(scale=3): gr.Markdown("#### Adjust Inputs") inputs = [] for category, variables in features_mapping.items(): with gr.Accordion(category, open=False): for csv_name, das_var in variables.items(): min_val = data[das_var].min() max_val = data[das_var].max() slider = gr.Slider( label=csv_name, minimum=min_val, maximum=max_val, value=(min_val + max_val) / 2, step=(max_val - min_val) / 100 ) inputs.append(slider) predict_btn = gr.Button("Predict", variant="primary") with gr.Column(scale=1): gr.Markdown("#### Predicted Result", elem_id="result-header") output = gr.Textbox(label="Predicted Close_^FTSE", interactive=False, value="$0.00 USD") predict_btn.click(fn=predict_func, inputs=inputs, outputs=output) return demo if __name__ == "__main__": X_train_scaled, X_test_scaled, y_train, y_test, scaler, nasa_features, data = load_and_prepare_data() model = train_model(X_train_scaled, y_train) demo = create_prediction_interface(model, scaler, data_mapping, data) demo.launch()