Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +94 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sklearn.model_selection import train_test_split
|
| 4 |
+
from sklearn.preprocessing import StandardScaler
|
| 5 |
+
from sklearn.linear_model import LinearRegression
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# Define the mapping between user-friendly names and NASA variable names
|
| 9 |
+
data_mapping = {
|
| 10 |
+
"Temperature": {
|
| 11 |
+
"Earth Skin Temperature": "TS",
|
| 12 |
+
"Temperature at 2 Meters": "T2M",
|
| 13 |
+
"Wet Bulb Temperature at 2 Meters": "T2MWET"
|
| 14 |
+
},
|
| 15 |
+
"Moisture & Precipitation": {
|
| 16 |
+
"Precipitation Average": "PRECTOTCORR",
|
| 17 |
+
"Profile Soil Moisture (surface to bedrock)": "GWETPROF",
|
| 18 |
+
"Root Zone Soil Wetness (surface to 100 cm below)": "GWETROOT",
|
| 19 |
+
"Surface Soil Wetness (surface to 5 cm below)": "GWETTOP"
|
| 20 |
+
},
|
| 21 |
+
"Air & Pressure": {
|
| 22 |
+
"Specific Humidity at 2 Meters": "QV2M",
|
| 23 |
+
"Surface Pressure": "PS"
|
| 24 |
+
},
|
| 25 |
+
"Wind": {
|
| 26 |
+
"Wind Direction at 10 Meters": "WD10M",
|
| 27 |
+
"Wind Direction at 2 Meters": "WD2M",
|
| 28 |
+
"Wind Speed at 10 Meters": "WS10M",
|
| 29 |
+
"Wind Speed at 2 Meters": "WS2M"
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
def load_and_prepare_data():
|
| 34 |
+
data = pd.read_csv('data/preprocessed_data.csv')
|
| 35 |
+
nasa_features = [var for category in data_mapping.values() for var in category.values()]
|
| 36 |
+
target = 'Close_^FTSE'
|
| 37 |
+
|
| 38 |
+
X = data[nasa_features]
|
| 39 |
+
y = data[target]
|
| 40 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=False)
|
| 41 |
+
|
| 42 |
+
scaler = StandardScaler()
|
| 43 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
| 44 |
+
X_test_scaled = scaler.transform(X_test)
|
| 45 |
+
|
| 46 |
+
return X_train_scaled, X_test_scaled, y_train, y_test, scaler, nasa_features, data
|
| 47 |
+
|
| 48 |
+
def train_model(X_train_scaled, y_train):
|
| 49 |
+
model = LinearRegression()
|
| 50 |
+
model.fit(X_train_scaled, y_train)
|
| 51 |
+
return model
|
| 52 |
+
|
| 53 |
+
def create_prediction_interface(model, scaler, features_mapping, data):
|
| 54 |
+
def predict_func(*args):
|
| 55 |
+
input_values = pd.DataFrame([args], columns=nasa_features)
|
| 56 |
+
input_values_scaled = scaler.transform(input_values)
|
| 57 |
+
prediction = model.predict(input_values_scaled)
|
| 58 |
+
return round(prediction[0], 2)
|
| 59 |
+
|
| 60 |
+
with gr.Blocks theme=gr.themes.Default()) as demo:
|
| 61 |
+
gr.Markdown("### Stock Price Prediction")
|
| 62 |
+
gr.Markdown("Adjust NASA POWER DAS variables to see predicted stock prices.")
|
| 63 |
+
|
| 64 |
+
with gr.Row():
|
| 65 |
+
with gr.Column(scale=3):
|
| 66 |
+
gr.Markdown("#### Adjust Inputs")
|
| 67 |
+
inputs = []
|
| 68 |
+
for category, variables in features_mapping.items():
|
| 69 |
+
with gr.Accordion(category, open=False):
|
| 70 |
+
for csv_name, das_var in variables.items():
|
| 71 |
+
min_val = data[das_var].min()
|
| 72 |
+
max_val = data[das_var].max()
|
| 73 |
+
slider = gr.Slider(
|
| 74 |
+
label=csv_name,
|
| 75 |
+
minimum=min_val,
|
| 76 |
+
maximum=max_val,
|
| 77 |
+
value=(min_val + max_val) / 2,
|
| 78 |
+
step=(max_val - min_val) / 100
|
| 79 |
+
)
|
| 80 |
+
inputs.append(slider)
|
| 81 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
| 82 |
+
|
| 83 |
+
with gr.Column(scale=1):
|
| 84 |
+
gr.Markdown("#### Predicted Result", elem_id="result-header")
|
| 85 |
+
output = gr.Number(label="Predicted Close_^FTSE", precision=2, interactive=False, value=0.0)
|
| 86 |
+
predict_btn.click(fn=predict_func, inputs=inputs, outputs=output)
|
| 87 |
+
|
| 88 |
+
return demo
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
X_train_scaled, X_test_scaled, y_train, y_test, scaler, nasa_features, data = load_and_prepare_data()
|
| 92 |
+
model = train_model(X_train_scaled, y_train)
|
| 93 |
+
demo = create_prediction_interface(model, scaler, data_mapping, data)
|
| 94 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
numpy
|
| 3 |
+
scikit-learn
|
| 4 |
+
gradio
|