alidenewade commited on
Commit
2d51f4d
·
verified ·
1 Parent(s): f94333d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -55,7 +55,7 @@ def create_prediction_interface(model, scaler, features_mapping, data):
55
  input_values = pd.DataFrame([args], columns=nasa_features)
56
  input_values_scaled = scaler.transform(input_values)
57
  prediction = model.predict(input_values_scaled)
58
- return round(prediction[0], 2)
59
 
60
  with gr.Blocks(theme=gr.themes.Default()) as demo:
61
  gr.Markdown("### Stock Price Prediction")
@@ -82,7 +82,7 @@ def create_prediction_interface(model, scaler, features_mapping, data):
82
 
83
  with gr.Column(scale=1):
84
  gr.Markdown("#### Predicted Result", elem_id="result-header")
85
- output = gr.Number(label="Predicted Close_^FTSE", precision=2, interactive=False, value=0.0)
86
  predict_btn.click(fn=predict_func, inputs=inputs, outputs=output)
87
 
88
  return demo
@@ -91,4 +91,4 @@ if __name__ == "__main__":
91
  X_train_scaled, X_test_scaled, y_train, y_test, scaler, nasa_features, data = load_and_prepare_data()
92
  model = train_model(X_train_scaled, y_train)
93
  demo = create_prediction_interface(model, scaler, data_mapping, data)
94
- demo.launch()
 
55
  input_values = pd.DataFrame([args], columns=nasa_features)
56
  input_values_scaled = scaler.transform(input_values)
57
  prediction = model.predict(input_values_scaled)
58
+ return f"${round(prediction[0], 2)} USD"
59
 
60
  with gr.Blocks(theme=gr.themes.Default()) as demo:
61
  gr.Markdown("### Stock Price Prediction")
 
82
 
83
  with gr.Column(scale=1):
84
  gr.Markdown("#### Predicted Result", elem_id="result-header")
85
+ output = gr.Textbox(label="Predicted Close_^FTSE", interactive=False, value="$0.00 USD")
86
  predict_btn.click(fn=predict_func, inputs=inputs, outputs=output)
87
 
88
  return demo
 
91
  X_train_scaled, X_test_scaled, y_train, y_test, scaler, nasa_features, data = load_and_prepare_data()
92
  model = train_model(X_train_scaled, y_train)
93
  demo = create_prediction_interface(model, scaler, data_mapping, data)
94
+ demo.launch()