import gradio as gr import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy.stats import norm import warnings warnings.filterwarnings('ignore') class HullWhiteModel: """Hull-White Interest Rate Model Implementation""" def __init__(self, scen_size=1000, time_len=30, step_size=360, a=0.1, sigma=0.1, r0=0.05): self.scen_size = scen_size self.time_len = time_len self.step_size = step_size self.a = a self.sigma = sigma self.r0 = r0 self.dt = time_len / step_size # Generate time grid self.t = np.linspace(0, time_len, step_size + 1) # Market forward rates (constant for simplicity) self.mkt_fwd = np.full(step_size + 1, r0) # Market zero-coupon bond prices self.mkt_zcb = np.exp(-self.mkt_fwd * self.t) # Alpha function self.alpha = self._calculate_alpha() # Generate random numbers np.random.seed(42) # For reproducibility self.random_normal = np.random.standard_normal((scen_size, step_size)) def _calculate_alpha(self): """Calculate alpha(t) = f^M(0,t) + sigma^2/(2*a^2) * (1-exp(-a*t))^2""" return self.mkt_fwd + (self.sigma**2 / (2 * self.a**2)) * (1 - np.exp(-self.a * self.t))**2 def simulate_short_rates(self): """Simulate short rate paths using Hull-White model""" r_paths = np.zeros((self.scen_size, self.step_size + 1)) r_paths[:, 0] = self.r0 for i in range(1, self.step_size + 1): # Calculate conditional mean exp_factor = np.exp(-self.a * self.dt) mean_r = r_paths[:, i-1] * exp_factor + self.alpha[i] - self.alpha[i-1] * exp_factor # Calculate conditional variance var_r = (self.sigma**2 / (2 * self.a)) * (1 - np.exp(-2 * self.a * self.dt)) std_r = np.sqrt(var_r) # Generate next step r_paths[:, i] = mean_r + std_r * self.random_normal[:, i-1] return r_paths def calculate_discount_factors(self, r_paths): """Calculate discount factors from short rate paths""" # Accumulate short rates (discrete approximation of integral) accum_rates = np.zeros_like(r_paths) for i in range(1, self.step_size + 1): accum_rates[:, i] = accum_rates[:, i-1] + r_paths[:, i-1] * self.dt # Calculate discount factors discount_factors = np.exp(-accum_rates) return discount_factors def theoretical_mean_short_rate(self): """Calculate theoretical mean of short rates E[r(t)|F_0]""" return self.r0 * np.exp(-self.a * self.t) + self.alpha - self.alpha[0] * np.exp(-self.a * self.t) def theoretical_var_short_rate(self): """Calculate theoretical variance of short rates Var[r(t)|F_0]""" return (self.sigma**2 / (2 * self.a)) * (1 - np.exp(-2 * self.a * self.t)) def create_short_rate_plot(scen_size, time_len, step_size, a, sigma, r0, num_paths): """Create short rate simulation plot""" model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0) r_paths = model.simulate_short_rates() fig, ax = plt.subplots(figsize=(12, 8)) # Plot first num_paths scenarios for i in range(min(num_paths, scen_size)): ax.plot(model.t, r_paths[i], alpha=0.7, linewidth=1) ax.set_xlabel('Time (years)') ax.set_ylabel('Short Rate') ax.set_title(f'Hull-White Short Rate Simulation ({num_paths} paths)\na={a}, σ={sigma}, scenarios={scen_size}') ax.grid(True, alpha=0.3) return fig def create_convergence_plot(scen_size, time_len, step_size, a, sigma, r0): """Create mean convergence plot""" model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0) r_paths = model.simulate_short_rates() # Calculate simulated means and theoretical expectations simulated_mean = np.mean(r_paths, axis=0) theoretical_mean = model.theoretical_mean_short_rate() fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(model.t, theoretical_mean, 'b-', linewidth=2, label='Theoretical E[r(t)]') ax.plot(model.t, simulated_mean, 'r--', linewidth=2, label='Simulated Mean') ax.set_xlabel('Time (years)') ax.set_ylabel('Short Rate') ax.set_title(f'Mean Convergence Analysis\na={a}, σ={sigma}, scenarios={scen_size}') ax.legend() ax.grid(True, alpha=0.3) return fig def create_variance_plot(scen_size, time_len, step_size, a, sigma, r0): """Create variance convergence plot""" model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0) r_paths = model.simulate_short_rates() # Calculate simulated variance and theoretical variance simulated_var = np.var(r_paths, axis=0) theoretical_var = model.theoretical_var_short_rate() fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(model.t, theoretical_var, 'b-', linewidth=2, label='Theoretical Var[r(t)]') ax.plot(model.t, simulated_var, 'r--', linewidth=2, label='Simulated Variance') ax.set_xlabel('Time (years)') ax.set_ylabel('Variance') ax.set_title(f'Variance Convergence Analysis\na={a}, σ={sigma}, scenarios={scen_size}') ax.legend() ax.grid(True, alpha=0.3) return fig def create_discount_factor_plot(scen_size, time_len, step_size, a, sigma, r0): """Create discount factor convergence plot""" model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0) r_paths = model.simulate_short_rates() discount_factors = model.calculate_discount_factors(r_paths) # Calculate mean discount factors mean_discount = np.mean(discount_factors, axis=0) fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(model.t, model.mkt_zcb, 'b-', linewidth=2, label='Market Zero-Coupon Bonds') ax.plot(model.t, mean_discount, 'r--', linewidth=2, label='Simulated Mean Discount Factor') ax.set_xlabel('Time (years)') ax.set_ylabel('Discount Factor') ax.set_title(f'Discount Factor Convergence\na={a}, σ={sigma}, σ/a={sigma/a:.2f}, scenarios={scen_size}') ax.legend() ax.grid(True, alpha=0.3) return fig def create_parameter_sensitivity_plot(base_scen_size, time_len, step_size, base_a, base_sigma, r0, vary_param): """Create parameter sensitivity analysis""" fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 12)) fig.suptitle(f'Parameter Sensitivity Analysis - Varying {vary_param}', fontsize=16) if vary_param == "sigma": param_values = [0.05, 0.075, 0.1, 0.125] base_param = base_a param_label = "σ" base_label = f"a={base_a}" else: # vary a param_values = [0.05, 0.1, 0.15, 0.2] base_param = base_sigma param_label = "a" base_label = f"σ={base_sigma}" axes = [ax1, ax2, ax3, ax4] for i, param_val in enumerate(param_values): if vary_param == "sigma": model = HullWhiteModel(base_scen_size, time_len, step_size, base_a, param_val, r0) ratio = param_val / base_a else: model = HullWhiteModel(base_scen_size, time_len, step_size, param_val, base_sigma, r0) ratio = base_sigma / param_val r_paths = model.simulate_short_rates() discount_factors = model.calculate_discount_factors(r_paths) mean_discount = np.mean(discount_factors, axis=0) axes[i].plot(model.t, model.mkt_zcb, 'b-', linewidth=2, label='Market ZCB') axes[i].plot(model.t, mean_discount, 'r--', linewidth=2, label='Simulated Mean') axes[i].set_title(f'{param_label}={param_val}, σ/a={ratio:.2f}') axes[i].grid(True, alpha=0.3) axes[i].legend() return fig def generate_statistics_table(scen_size, time_len, step_size, a, sigma, r0): """Generate summary statistics table""" model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0) r_paths = model.simulate_short_rates() # Calculate statistics at key time points time_points = [0, int(step_size*0.25), int(step_size*0.5), int(step_size*0.75), step_size] times = [model.t[i] for i in time_points] stats_data = [] for i, t_idx in enumerate(time_points): rates_at_t = r_paths[:, t_idx] theoretical_mean = model.theoretical_mean_short_rate()[t_idx] theoretical_var = model.theoretical_var_short_rate()[t_idx] stats_data.append({ 'Time': f'{times[i]:.1f}', 'Simulated Mean': f'{np.mean(rates_at_t):.4f}', 'Theoretical Mean': f'{theoretical_mean:.4f}', 'Mean Error': f'{abs(np.mean(rates_at_t) - theoretical_mean):.4f}', 'Simulated Std': f'{np.std(rates_at_t):.4f}', 'Theoretical Std': f'{np.sqrt(theoretical_var):.4f}', 'Std Error': f'{abs(np.std(rates_at_t) - np.sqrt(theoretical_var)):.4f}' }) return pd.DataFrame(stats_data) # Create Gradio interface with gr.Blocks(title="Hull-White Interest Rate Model Dashboard") as demo: gr.Markdown(""" # 📊 Hull-White Interest Rate Model Dashboard This interactive dashboard allows actuaries and financial professionals to explore the Hull-White short rate model: **$$dr(t) = (θ(t) - ar(t))dt + σdW$$** Adjust the parameters below to see how they affect the interest rate simulations and convergence properties. """) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Model Parameters") scen_size = gr.Slider(100, 10000, value=1000, step=100, label="Number of Scenarios") time_len = gr.Slider(5, 50, value=30, step=5, label="Time Horizon (years)") step_size = gr.Slider(100, 500, value=360, step=60, label="Number of Time Steps") a = gr.Slider(0.01, 0.5, value=0.1, step=0.01, label="Mean Reversion Speed (a)") sigma = gr.Slider(0.01, 0.3, value=0.1, step=0.01, label="Volatility (σ)") r0 = gr.Slider(0.01, 0.15, value=0.05, step=0.01, label="Initial Rate (r₀)") gr.Markdown("### Display Options") num_paths = gr.Slider(1, 50, value=10, step=1, label="Number of Paths to Display") with gr.Row(): vary_param = gr.Radio(["sigma", "a"], value="sigma", label="Parameter Sensitivity Analysis") with gr.Column(scale=2): with gr.Tabs(): with gr.TabItem("Short Rate Paths"): short_rate_plot = gr.Plot(label="Short Rate Simulation") with gr.TabItem("Mean Convergence"): convergence_plot = gr.Plot(label="Mean Convergence Analysis") with gr.TabItem("Variance Convergence"): variance_plot = gr.Plot(label="Variance Convergence Analysis") with gr.TabItem("Discount Factors"): discount_plot = gr.Plot(label="Discount Factor Analysis") with gr.TabItem("Parameter Sensitivity"): sensitivity_plot = gr.Plot(label="Parameter Sensitivity Analysis") with gr.TabItem("Statistics"): stats_table = gr.Dataframe(label="Summary Statistics") gr.Markdown(""" ### About the Hull-White Model - **Mean Reversion Speed (a)**: Controls how quickly rates revert to the long-term mean - **Volatility (σ)**: Controls the randomness in rate movements - **σ/a Ratio**: Key parameter for convergence - ratios > 1 show poor convergence - **Scenarios**: More scenarios improve Monte Carlo convergence but increase computation time **Model Features:** - Gaussian short rate process - Analytical formulas for conditional moments - Market-consistent calibration capability - Monte Carlo simulation for complex derivatives """) # Update all plots when parameters change inputs = [scen_size, time_len, step_size, a, sigma, r0] # Connect inputs to outputs for inp in inputs + [num_paths]: inp.change( fn=create_short_rate_plot, inputs=inputs + [num_paths], outputs=short_rate_plot ) for inp in inputs: inp.change( fn=create_convergence_plot, inputs=inputs, outputs=convergence_plot ) inp.change( fn=create_variance_plot, inputs=inputs, outputs=variance_plot ) inp.change( fn=create_discount_factor_plot, inputs=inputs, outputs=discount_plot ) inp.change( fn=generate_statistics_table, inputs=inputs, outputs=stats_table ) # Parameter sensitivity updates for inp in inputs[:-1] + [vary_param]: # Exclude r0 from base params for sensitivity inp.change( fn=create_parameter_sensitivity_plot, inputs=[scen_size, time_len, step_size, a, sigma, r0, vary_param], outputs=sensitivity_plot ) # Initialize plots on load demo.load( fn=create_short_rate_plot, inputs=inputs + [num_paths], outputs=short_rate_plot ) demo.load( fn=create_convergence_plot, inputs=inputs, outputs=convergence_plot ) demo.load( fn=create_variance_plot, inputs=inputs, outputs=variance_plot ) demo.load( fn=create_discount_factor_plot, inputs=inputs, outputs=discount_plot ) demo.load( fn=create_parameter_sensitivity_plot, inputs=[scen_size, time_len, step_size, a, sigma, r0, vary_param], outputs=sensitivity_plot ) demo.load( fn=generate_statistics_table, inputs=inputs, outputs=stats_table ) if __name__ == "__main__": demo.launch()