alidenewade's picture
Update app.py
ed89a7a verified
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.stats import norm
import warnings
warnings.filterwarnings('ignore')
class HullWhiteModel:
"""Hull-White Interest Rate Model Implementation"""
def __init__(self, scen_size=1000, time_len=30, step_size=360, a=0.1, sigma=0.1, r0=0.05):
self.scen_size = scen_size
self.time_len = time_len
self.step_size = step_size
self.a = a
self.sigma = sigma
self.r0 = r0
self.dt = time_len / step_size
# Generate time grid
self.t = np.linspace(0, time_len, step_size + 1)
# Market forward rates (constant for simplicity)
self.mkt_fwd = np.full(step_size + 1, r0)
# Market zero-coupon bond prices
self.mkt_zcb = np.exp(-self.mkt_fwd * self.t)
# Alpha function
self.alpha = self._calculate_alpha()
# Generate random numbers
np.random.seed(42) # For reproducibility
self.random_normal = np.random.standard_normal((scen_size, step_size))
def _calculate_alpha(self):
"""Calculate alpha(t) = f^M(0,t) + sigma^2/(2*a^2) * (1-exp(-a*t))^2"""
return self.mkt_fwd + (self.sigma**2 / (2 * self.a**2)) * (1 - np.exp(-self.a * self.t))**2
def simulate_short_rates(self):
"""Simulate short rate paths using Hull-White model"""
r_paths = np.zeros((self.scen_size, self.step_size + 1))
r_paths[:, 0] = self.r0
for i in range(1, self.step_size + 1):
# Calculate conditional mean
exp_factor = np.exp(-self.a * self.dt)
mean_r = r_paths[:, i-1] * exp_factor + self.alpha[i] - self.alpha[i-1] * exp_factor
# Calculate conditional variance
var_r = (self.sigma**2 / (2 * self.a)) * (1 - np.exp(-2 * self.a * self.dt))
std_r = np.sqrt(var_r)
# Generate next step
r_paths[:, i] = mean_r + std_r * self.random_normal[:, i-1]
return r_paths
def calculate_discount_factors(self, r_paths):
"""Calculate discount factors from short rate paths"""
# Accumulate short rates (discrete approximation of integral)
accum_rates = np.zeros_like(r_paths)
for i in range(1, self.step_size + 1):
accum_rates[:, i] = accum_rates[:, i-1] + r_paths[:, i-1] * self.dt
# Calculate discount factors
discount_factors = np.exp(-accum_rates)
return discount_factors
def theoretical_mean_short_rate(self):
"""Calculate theoretical mean of short rates E[r(t)|F_0]"""
return self.r0 * np.exp(-self.a * self.t) + self.alpha - self.alpha[0] * np.exp(-self.a * self.t)
def theoretical_var_short_rate(self):
"""Calculate theoretical variance of short rates Var[r(t)|F_0]"""
return (self.sigma**2 / (2 * self.a)) * (1 - np.exp(-2 * self.a * self.t))
def create_short_rate_plot(scen_size, time_len, step_size, a, sigma, r0, num_paths):
"""Create short rate simulation plot"""
model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
r_paths = model.simulate_short_rates()
fig, ax = plt.subplots(figsize=(12, 8))
# Plot first num_paths scenarios
for i in range(min(num_paths, scen_size)):
ax.plot(model.t, r_paths[i], alpha=0.7, linewidth=1)
ax.set_xlabel('Time (years)')
ax.set_ylabel('Short Rate')
ax.set_title(f'Hull-White Short Rate Simulation ({num_paths} paths)\na={a}, σ={sigma}, scenarios={scen_size}')
ax.grid(True, alpha=0.3)
return fig
def create_convergence_plot(scen_size, time_len, step_size, a, sigma, r0):
"""Create mean convergence plot"""
model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
r_paths = model.simulate_short_rates()
# Calculate simulated means and theoretical expectations
simulated_mean = np.mean(r_paths, axis=0)
theoretical_mean = model.theoretical_mean_short_rate()
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(model.t, theoretical_mean, 'b-', linewidth=2, label='Theoretical E[r(t)]')
ax.plot(model.t, simulated_mean, 'r--', linewidth=2, label='Simulated Mean')
ax.set_xlabel('Time (years)')
ax.set_ylabel('Short Rate')
ax.set_title(f'Mean Convergence Analysis\na={a}, σ={sigma}, scenarios={scen_size}')
ax.legend()
ax.grid(True, alpha=0.3)
return fig
def create_variance_plot(scen_size, time_len, step_size, a, sigma, r0):
"""Create variance convergence plot"""
model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
r_paths = model.simulate_short_rates()
# Calculate simulated variance and theoretical variance
simulated_var = np.var(r_paths, axis=0)
theoretical_var = model.theoretical_var_short_rate()
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(model.t, theoretical_var, 'b-', linewidth=2, label='Theoretical Var[r(t)]')
ax.plot(model.t, simulated_var, 'r--', linewidth=2, label='Simulated Variance')
ax.set_xlabel('Time (years)')
ax.set_ylabel('Variance')
ax.set_title(f'Variance Convergence Analysis\na={a}, σ={sigma}, scenarios={scen_size}')
ax.legend()
ax.grid(True, alpha=0.3)
return fig
def create_discount_factor_plot(scen_size, time_len, step_size, a, sigma, r0):
"""Create discount factor convergence plot"""
model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
r_paths = model.simulate_short_rates()
discount_factors = model.calculate_discount_factors(r_paths)
# Calculate mean discount factors
mean_discount = np.mean(discount_factors, axis=0)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(model.t, model.mkt_zcb, 'b-', linewidth=2, label='Market Zero-Coupon Bonds')
ax.plot(model.t, mean_discount, 'r--', linewidth=2, label='Simulated Mean Discount Factor')
ax.set_xlabel('Time (years)')
ax.set_ylabel('Discount Factor')
ax.set_title(f'Discount Factor Convergence\na={a}, σ={sigma}, σ/a={sigma/a:.2f}, scenarios={scen_size}')
ax.legend()
ax.grid(True, alpha=0.3)
return fig
def create_parameter_sensitivity_plot(base_scen_size, time_len, step_size, base_a, base_sigma, r0, vary_param):
"""Create parameter sensitivity analysis"""
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle(f'Parameter Sensitivity Analysis - Varying {vary_param}', fontsize=16)
if vary_param == "sigma":
param_values = [0.05, 0.075, 0.1, 0.125]
base_param = base_a
param_label = "σ"
base_label = f"a={base_a}"
else: # vary a
param_values = [0.05, 0.1, 0.15, 0.2]
base_param = base_sigma
param_label = "a"
base_label = f"σ={base_sigma}"
axes = [ax1, ax2, ax3, ax4]
for i, param_val in enumerate(param_values):
if vary_param == "sigma":
model = HullWhiteModel(base_scen_size, time_len, step_size, base_a, param_val, r0)
ratio = param_val / base_a
else:
model = HullWhiteModel(base_scen_size, time_len, step_size, param_val, base_sigma, r0)
ratio = base_sigma / param_val
r_paths = model.simulate_short_rates()
discount_factors = model.calculate_discount_factors(r_paths)
mean_discount = np.mean(discount_factors, axis=0)
axes[i].plot(model.t, model.mkt_zcb, 'b-', linewidth=2, label='Market ZCB')
axes[i].plot(model.t, mean_discount, 'r--', linewidth=2, label='Simulated Mean')
axes[i].set_title(f'{param_label}={param_val}, σ/a={ratio:.2f}')
axes[i].grid(True, alpha=0.3)
axes[i].legend()
return fig
def generate_statistics_table(scen_size, time_len, step_size, a, sigma, r0):
"""Generate summary statistics table"""
model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
r_paths = model.simulate_short_rates()
# Calculate statistics at key time points
time_points = [0, int(step_size*0.25), int(step_size*0.5), int(step_size*0.75), step_size]
times = [model.t[i] for i in time_points]
stats_data = []
for i, t_idx in enumerate(time_points):
rates_at_t = r_paths[:, t_idx]
theoretical_mean = model.theoretical_mean_short_rate()[t_idx]
theoretical_var = model.theoretical_var_short_rate()[t_idx]
stats_data.append({
'Time': f'{times[i]:.1f}',
'Simulated Mean': f'{np.mean(rates_at_t):.4f}',
'Theoretical Mean': f'{theoretical_mean:.4f}',
'Mean Error': f'{abs(np.mean(rates_at_t) - theoretical_mean):.4f}',
'Simulated Std': f'{np.std(rates_at_t):.4f}',
'Theoretical Std': f'{np.sqrt(theoretical_var):.4f}',
'Std Error': f'{abs(np.std(rates_at_t) - np.sqrt(theoretical_var)):.4f}'
})
return pd.DataFrame(stats_data)
# Create Gradio interface
with gr.Blocks(title="Hull-White Interest Rate Model Dashboard") as demo:
gr.Markdown("""
# 📊 Hull-White Interest Rate Model Dashboard
This interactive dashboard allows actuaries and financial professionals to explore the Hull-White short rate model:
**$$dr(t) = (θ(t) - ar(t))dt + σdW$$**
Adjust the parameters below to see how they affect the interest rate simulations and convergence properties.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model Parameters")
scen_size = gr.Slider(100, 10000, value=1000, step=100, label="Number of Scenarios")
time_len = gr.Slider(5, 50, value=30, step=5, label="Time Horizon (years)")
step_size = gr.Slider(100, 500, value=360, step=60, label="Number of Time Steps")
a = gr.Slider(0.01, 0.5, value=0.1, step=0.01, label="Mean Reversion Speed (a)")
sigma = gr.Slider(0.01, 0.3, value=0.1, step=0.01, label="Volatility (σ)")
r0 = gr.Slider(0.01, 0.15, value=0.05, step=0.01, label="Initial Rate (r₀)")
gr.Markdown("### Display Options")
num_paths = gr.Slider(1, 50, value=10, step=1, label="Number of Paths to Display")
with gr.Row():
vary_param = gr.Radio(["sigma", "a"], value="sigma", label="Parameter Sensitivity Analysis")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Short Rate Paths"):
short_rate_plot = gr.Plot(label="Short Rate Simulation")
with gr.TabItem("Mean Convergence"):
convergence_plot = gr.Plot(label="Mean Convergence Analysis")
with gr.TabItem("Variance Convergence"):
variance_plot = gr.Plot(label="Variance Convergence Analysis")
with gr.TabItem("Discount Factors"):
discount_plot = gr.Plot(label="Discount Factor Analysis")
with gr.TabItem("Parameter Sensitivity"):
sensitivity_plot = gr.Plot(label="Parameter Sensitivity Analysis")
with gr.TabItem("Statistics"):
stats_table = gr.Dataframe(label="Summary Statistics")
gr.Markdown("""
### About the Hull-White Model
- **Mean Reversion Speed (a)**: Controls how quickly rates revert to the long-term mean
- **Volatility (σ)**: Controls the randomness in rate movements
- **σ/a Ratio**: Key parameter for convergence - ratios > 1 show poor convergence
- **Scenarios**: More scenarios improve Monte Carlo convergence but increase computation time
**Model Features:**
- Gaussian short rate process
- Analytical formulas for conditional moments
- Market-consistent calibration capability
- Monte Carlo simulation for complex derivatives
""")
# Update all plots when parameters change
inputs = [scen_size, time_len, step_size, a, sigma, r0]
# Connect inputs to outputs
for inp in inputs + [num_paths]:
inp.change(
fn=create_short_rate_plot,
inputs=inputs + [num_paths],
outputs=short_rate_plot
)
for inp in inputs:
inp.change(
fn=create_convergence_plot,
inputs=inputs,
outputs=convergence_plot
)
inp.change(
fn=create_variance_plot,
inputs=inputs,
outputs=variance_plot
)
inp.change(
fn=create_discount_factor_plot,
inputs=inputs,
outputs=discount_plot
)
inp.change(
fn=generate_statistics_table,
inputs=inputs,
outputs=stats_table
)
# Parameter sensitivity updates
for inp in inputs[:-1] + [vary_param]: # Exclude r0 from base params for sensitivity
inp.change(
fn=create_parameter_sensitivity_plot,
inputs=[scen_size, time_len, step_size, a, sigma, r0, vary_param],
outputs=sensitivity_plot
)
# Initialize plots on load
demo.load(
fn=create_short_rate_plot,
inputs=inputs + [num_paths],
outputs=short_rate_plot
)
demo.load(
fn=create_convergence_plot,
inputs=inputs,
outputs=convergence_plot
)
demo.load(
fn=create_variance_plot,
inputs=inputs,
outputs=variance_plot
)
demo.load(
fn=create_discount_factor_plot,
inputs=inputs,
outputs=discount_plot
)
demo.load(
fn=create_parameter_sensitivity_plot,
inputs=[scen_size, time_len, step_size, a, sigma, r0, vary_param],
outputs=sensitivity_plot
)
demo.load(
fn=generate_statistics_table,
inputs=inputs,
outputs=stats_table
)
if __name__ == "__main__":
demo.launch()