File size: 14,223 Bytes
b024610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed89a7a
b024610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.stats import norm
import warnings
warnings.filterwarnings('ignore')

class HullWhiteModel:
    """Hull-White Interest Rate Model Implementation"""
    
    def __init__(self, scen_size=1000, time_len=30, step_size=360, a=0.1, sigma=0.1, r0=0.05):
        self.scen_size = scen_size
        self.time_len = time_len
        self.step_size = step_size
        self.a = a
        self.sigma = sigma
        self.r0 = r0
        self.dt = time_len / step_size
        
        # Generate time grid
        self.t = np.linspace(0, time_len, step_size + 1)
        
        # Market forward rates (constant for simplicity)
        self.mkt_fwd = np.full(step_size + 1, r0)
        
        # Market zero-coupon bond prices
        self.mkt_zcb = np.exp(-self.mkt_fwd * self.t)
        
        # Alpha function
        self.alpha = self._calculate_alpha()
        
        # Generate random numbers
        np.random.seed(42)  # For reproducibility
        self.random_normal = np.random.standard_normal((scen_size, step_size))
        
    def _calculate_alpha(self):
        """Calculate alpha(t) = f^M(0,t) + sigma^2/(2*a^2) * (1-exp(-a*t))^2"""
        return self.mkt_fwd + (self.sigma**2 / (2 * self.a**2)) * (1 - np.exp(-self.a * self.t))**2
    
    def simulate_short_rates(self):
        """Simulate short rate paths using Hull-White model"""
        r_paths = np.zeros((self.scen_size, self.step_size + 1))
        r_paths[:, 0] = self.r0
        
        for i in range(1, self.step_size + 1):
            # Calculate conditional mean
            exp_factor = np.exp(-self.a * self.dt)
            mean_r = r_paths[:, i-1] * exp_factor + self.alpha[i] - self.alpha[i-1] * exp_factor
            
            # Calculate conditional variance
            var_r = (self.sigma**2 / (2 * self.a)) * (1 - np.exp(-2 * self.a * self.dt))
            std_r = np.sqrt(var_r)
            
            # Generate next step
            r_paths[:, i] = mean_r + std_r * self.random_normal[:, i-1]
            
        return r_paths
    
    def calculate_discount_factors(self, r_paths):
        """Calculate discount factors from short rate paths"""
        # Accumulate short rates (discrete approximation of integral)
        accum_rates = np.zeros_like(r_paths)
        for i in range(1, self.step_size + 1):
            accum_rates[:, i] = accum_rates[:, i-1] + r_paths[:, i-1] * self.dt
        
        # Calculate discount factors
        discount_factors = np.exp(-accum_rates)
        return discount_factors
    
    def theoretical_mean_short_rate(self):
        """Calculate theoretical mean of short rates E[r(t)|F_0]"""
        return self.r0 * np.exp(-self.a * self.t) + self.alpha - self.alpha[0] * np.exp(-self.a * self.t)
    
    def theoretical_var_short_rate(self):
        """Calculate theoretical variance of short rates Var[r(t)|F_0]"""
        return (self.sigma**2 / (2 * self.a)) * (1 - np.exp(-2 * self.a * self.t))

def create_short_rate_plot(scen_size, time_len, step_size, a, sigma, r0, num_paths):
    """Create short rate simulation plot"""
    model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
    r_paths = model.simulate_short_rates()
    
    fig, ax = plt.subplots(figsize=(12, 8))
    
    # Plot first num_paths scenarios
    for i in range(min(num_paths, scen_size)):
        ax.plot(model.t, r_paths[i], alpha=0.7, linewidth=1)
    
    ax.set_xlabel('Time (years)')
    ax.set_ylabel('Short Rate')
    ax.set_title(f'Hull-White Short Rate Simulation ({num_paths} paths)\na={a}, σ={sigma}, scenarios={scen_size}')
    ax.grid(True, alpha=0.3)
    
    return fig

def create_convergence_plot(scen_size, time_len, step_size, a, sigma, r0):
    """Create mean convergence plot"""
    model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
    r_paths = model.simulate_short_rates()
    
    # Calculate simulated means and theoretical expectations
    simulated_mean = np.mean(r_paths, axis=0)
    theoretical_mean = model.theoretical_mean_short_rate()
    
    fig, ax = plt.subplots(figsize=(12, 8))
    
    ax.plot(model.t, theoretical_mean, 'b-', linewidth=2, label='Theoretical E[r(t)]')
    ax.plot(model.t, simulated_mean, 'r--', linewidth=2, label='Simulated Mean')
    
    ax.set_xlabel('Time (years)')
    ax.set_ylabel('Short Rate')
    ax.set_title(f'Mean Convergence Analysis\na={a}, σ={sigma}, scenarios={scen_size}')
    ax.legend()
    ax.grid(True, alpha=0.3)
    
    return fig

def create_variance_plot(scen_size, time_len, step_size, a, sigma, r0):
    """Create variance convergence plot"""
    model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
    r_paths = model.simulate_short_rates()
    
    # Calculate simulated variance and theoretical variance
    simulated_var = np.var(r_paths, axis=0)
    theoretical_var = model.theoretical_var_short_rate()
    
    fig, ax = plt.subplots(figsize=(12, 8))
    
    ax.plot(model.t, theoretical_var, 'b-', linewidth=2, label='Theoretical Var[r(t)]')
    ax.plot(model.t, simulated_var, 'r--', linewidth=2, label='Simulated Variance')
    
    ax.set_xlabel('Time (years)')
    ax.set_ylabel('Variance')
    ax.set_title(f'Variance Convergence Analysis\na={a}, σ={sigma}, scenarios={scen_size}')
    ax.legend()
    ax.grid(True, alpha=0.3)
    
    return fig

def create_discount_factor_plot(scen_size, time_len, step_size, a, sigma, r0):
    """Create discount factor convergence plot"""
    model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
    r_paths = model.simulate_short_rates()
    discount_factors = model.calculate_discount_factors(r_paths)
    
    # Calculate mean discount factors
    mean_discount = np.mean(discount_factors, axis=0)
    
    fig, ax = plt.subplots(figsize=(12, 8))
    
    ax.plot(model.t, model.mkt_zcb, 'b-', linewidth=2, label='Market Zero-Coupon Bonds')
    ax.plot(model.t, mean_discount, 'r--', linewidth=2, label='Simulated Mean Discount Factor')
    
    ax.set_xlabel('Time (years)')
    ax.set_ylabel('Discount Factor')
    ax.set_title(f'Discount Factor Convergence\na={a}, σ={sigma}, σ/a={sigma/a:.2f}, scenarios={scen_size}')
    ax.legend()
    ax.grid(True, alpha=0.3)
    
    return fig

def create_parameter_sensitivity_plot(base_scen_size, time_len, step_size, base_a, base_sigma, r0, vary_param):
    """Create parameter sensitivity analysis"""
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 12))
    fig.suptitle(f'Parameter Sensitivity Analysis - Varying {vary_param}', fontsize=16)
    
    if vary_param == "sigma":
        param_values = [0.05, 0.075, 0.1, 0.125]
        base_param = base_a
        param_label = "σ"
        base_label = f"a={base_a}"
    else:  # vary a
        param_values = [0.05, 0.1, 0.15, 0.2]
        base_param = base_sigma
        param_label = "a"
        base_label = f"σ={base_sigma}"
    
    axes = [ax1, ax2, ax3, ax4]
    
    for i, param_val in enumerate(param_values):
        if vary_param == "sigma":
            model = HullWhiteModel(base_scen_size, time_len, step_size, base_a, param_val, r0)
            ratio = param_val / base_a
        else:
            model = HullWhiteModel(base_scen_size, time_len, step_size, param_val, base_sigma, r0)
            ratio = base_sigma / param_val
        
        r_paths = model.simulate_short_rates()
        discount_factors = model.calculate_discount_factors(r_paths)
        mean_discount = np.mean(discount_factors, axis=0)
        
        axes[i].plot(model.t, model.mkt_zcb, 'b-', linewidth=2, label='Market ZCB')
        axes[i].plot(model.t, mean_discount, 'r--', linewidth=2, label='Simulated Mean')
        axes[i].set_title(f'{param_label}={param_val}, σ/a={ratio:.2f}')
        axes[i].grid(True, alpha=0.3)
        axes[i].legend()
    
    return fig

def generate_statistics_table(scen_size, time_len, step_size, a, sigma, r0):
    """Generate summary statistics table"""
    model = HullWhiteModel(scen_size, time_len, step_size, a, sigma, r0)
    r_paths = model.simulate_short_rates()
    
    # Calculate statistics at key time points
    time_points = [0, int(step_size*0.25), int(step_size*0.5), int(step_size*0.75), step_size]
    times = [model.t[i] for i in time_points]
    
    stats_data = []
    for i, t_idx in enumerate(time_points):
        rates_at_t = r_paths[:, t_idx]
        theoretical_mean = model.theoretical_mean_short_rate()[t_idx]
        theoretical_var = model.theoretical_var_short_rate()[t_idx]
        
        stats_data.append({
            'Time': f'{times[i]:.1f}',
            'Simulated Mean': f'{np.mean(rates_at_t):.4f}',
            'Theoretical Mean': f'{theoretical_mean:.4f}',
            'Mean Error': f'{abs(np.mean(rates_at_t) - theoretical_mean):.4f}',
            'Simulated Std': f'{np.std(rates_at_t):.4f}',
            'Theoretical Std': f'{np.sqrt(theoretical_var):.4f}',
            'Std Error': f'{abs(np.std(rates_at_t) - np.sqrt(theoretical_var)):.4f}'
        })
    
    return pd.DataFrame(stats_data)

# Create Gradio interface
with gr.Blocks(title="Hull-White Interest Rate Model Dashboard") as demo:
    gr.Markdown("""
    # 📊 Hull-White Interest Rate Model Dashboard
    
    This interactive dashboard allows actuaries and financial professionals to explore the Hull-White short rate model:
    
    **$$dr(t) = (θ(t) - ar(t))dt + σdW$$**
    
    Adjust the parameters below to see how they affect the interest rate simulations and convergence properties.
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Model Parameters")
            scen_size = gr.Slider(100, 10000, value=1000, step=100, label="Number of Scenarios")
            time_len = gr.Slider(5, 50, value=30, step=5, label="Time Horizon (years)")
            step_size = gr.Slider(100, 500, value=360, step=60, label="Number of Time Steps")
            a = gr.Slider(0.01, 0.5, value=0.1, step=0.01, label="Mean Reversion Speed (a)")
            sigma = gr.Slider(0.01, 0.3, value=0.1, step=0.01, label="Volatility (σ)")
            r0 = gr.Slider(0.01, 0.15, value=0.05, step=0.01, label="Initial Rate (r₀)")
            
            gr.Markdown("### Display Options")
            num_paths = gr.Slider(1, 50, value=10, step=1, label="Number of Paths to Display")
            
            with gr.Row():
                vary_param = gr.Radio(["sigma", "a"], value="sigma", label="Parameter Sensitivity Analysis")
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Short Rate Paths"):
                    short_rate_plot = gr.Plot(label="Short Rate Simulation")
                
                with gr.TabItem("Mean Convergence"):
                    convergence_plot = gr.Plot(label="Mean Convergence Analysis")
                
                with gr.TabItem("Variance Convergence"):
                    variance_plot = gr.Plot(label="Variance Convergence Analysis")
                
                with gr.TabItem("Discount Factors"):
                    discount_plot = gr.Plot(label="Discount Factor Analysis")
                
                with gr.TabItem("Parameter Sensitivity"):
                    sensitivity_plot = gr.Plot(label="Parameter Sensitivity Analysis")
                
                with gr.TabItem("Statistics"):
                    stats_table = gr.Dataframe(label="Summary Statistics")
    
    gr.Markdown("""
    ### About the Hull-White Model
    
    - **Mean Reversion Speed (a)**: Controls how quickly rates revert to the long-term mean
    - **Volatility (σ)**: Controls the randomness in rate movements  
    - **σ/a Ratio**: Key parameter for convergence - ratios > 1 show poor convergence
    - **Scenarios**: More scenarios improve Monte Carlo convergence but increase computation time
    
    **Model Features:**
    - Gaussian short rate process
    - Analytical formulas for conditional moments
    - Market-consistent calibration capability
    - Monte Carlo simulation for complex derivatives
    """)
    
    # Update all plots when parameters change
    inputs = [scen_size, time_len, step_size, a, sigma, r0]
    
    # Connect inputs to outputs
    for inp in inputs + [num_paths]:
        inp.change(
            fn=create_short_rate_plot,
            inputs=inputs + [num_paths],
            outputs=short_rate_plot
        )
    
    for inp in inputs:
        inp.change(
            fn=create_convergence_plot,
            inputs=inputs,
            outputs=convergence_plot
        )
        
        inp.change(
            fn=create_variance_plot,
            inputs=inputs,
            outputs=variance_plot
        )
        
        inp.change(
            fn=create_discount_factor_plot,
            inputs=inputs,
            outputs=discount_plot
        )
        
        inp.change(
            fn=generate_statistics_table,
            inputs=inputs,
            outputs=stats_table
        )
    
    # Parameter sensitivity updates
    for inp in inputs[:-1] + [vary_param]:  # Exclude r0 from base params for sensitivity
        inp.change(
            fn=create_parameter_sensitivity_plot,
            inputs=[scen_size, time_len, step_size, a, sigma, r0, vary_param],
            outputs=sensitivity_plot
        )
    
    # Initialize plots on load
    demo.load(
        fn=create_short_rate_plot,
        inputs=inputs + [num_paths],
        outputs=short_rate_plot
    )
    demo.load(
        fn=create_convergence_plot,
        inputs=inputs,
        outputs=convergence_plot
    )
    demo.load(
        fn=create_variance_plot,
        inputs=inputs,
        outputs=variance_plot
    )
    demo.load(
        fn=create_discount_factor_plot,
        inputs=inputs,
        outputs=discount_plot
    )
    demo.load(
        fn=create_parameter_sensitivity_plot,
        inputs=[scen_size, time_len, step_size, a, sigma, r0, vary_param],
        outputs=sensitivity_plot
    )
    demo.load(
        fn=generate_statistics_table,
        inputs=inputs,
        outputs=stats_table
    )

if __name__ == "__main__":
    demo.launch()