alidenewade's picture
Update app.py
430eb42 verified
raw
history blame
47.3 kB
# AI-Powered Drug Discovery Pipeline Streamlit Application
# This script integrates four phases of drug discovery into a single, interactive web app.
import streamlit as st
import pandas as pd
import numpy as np
import requests
import io
import re
from PIL import Image
import base64
# RDKit and BioPython imports
from rdkit import Chem
from rdkit.Chem import Draw, AllChem, Descriptors
from Bio import SeqIO
# Scikit-learn for ML models
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 3D Visualization
import py3Dmol
# Bokeh plotting
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.layouts import gridplot
from bokeh.transform import factor_cmap, cumsum
from math import pi
# Suppress warnings for cleaner output
import warnings
warnings.filterwarnings('ignore')
# --- Page Configuration ---
st.set_page_config(
page_title="AI Drug Discovery Pipeline",
page_icon="πŸ”¬",
layout="wide",
initial_sidebar_state="collapsed",
)
# Custom CSS for a professional, dark theme
def apply_custom_styling():
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
html, body, [class*="st-"] {
font-family: 'Roboto', sans-serif;
}
.stApp {
background-color: rgb(28, 28, 28);
color: white;
}
/* Tab styles */
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background: none;
border-radius: 0px;
border-bottom: 2px solid #333;
padding: 10px 4px;
color: #AAA;
}
.stTabs [data-baseweb="tab"]:hover {
background: #222;
color: #FFF;
}
.stTabs [aria-selected="true"] {
border-bottom: 2px solid #00A0FF; /* Highlight color for active tab */
color: #FFF;
}
/* Button styles */
.stButton>button {
border-color: #00A0FF;
color: #00A0FF;
}
.stButton>button:hover {
border-color: #FFF;
color: #FFF;
background-color: #00A0FF;
}
/* Ensure headers are white */
h1, h2, h3, h4, h5, h6 {
color: white !important;
}
</style>
""",
unsafe_allow_html=True
)
apply_custom_styling()
# --- 2. Core Functions from All Phases ---
# These functions are adapted from the provided Python scripts.
# ===== Phase 1 Functions =====
@st.cache_data(show_spinner="Fetching PDB structure...")
def fetch_pdb_structure(pdb_id: str):
"""
Fetches a PDB file and returns its content.
"""
log = ""
try:
url = f"https://files.rcsb.org/download/{pdb_id}.pdb"
response = requests.get(url, timeout=20)
if response.status_code == 200:
log += f"βœ… Successfully fetched PDB data for {pdb_id}.\n"
return response.text, log
else:
log += f"⚠️ Failed to fetch PDB file for {pdb_id} (Status: {response.status_code}). Please check the PDB ID and try again.\n"
return None, log
except Exception as e:
log += f"❌ An error occurred while fetching PDB data: {e}\n"
return None, log
@st.cache_data(show_spinner="Fetching FASTA sequence...")
def fetch_fasta_sequence(protein_id: str):
"""
Fetches a protein's FASTA sequence from NCBI.
"""
log = ""
try:
url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id={protein_id}&rettype=fasta&retmode=text"
response = requests.get(url, timeout=20)
if response.status_code == 200:
parsed_fasta = SeqIO.read(io.StringIO(response.text), "fasta")
log += f"βœ… Successfully fetched FASTA sequence for {protein_id}.\n\n"
log += f"--- Protein Sequence Information ---\n"
log += f"ID: {parsed_fasta.id}\n"
log += f"Description: {parsed_fasta.description}\n"
log += f"Sequence Length: {len(parsed_fasta.seq)}\n"
log += f"Sequence Preview: {parsed_fasta.seq[:60]}...\n"
return log
else:
log += f"⚠️ Failed to fetch FASTA file (Status: {response.status_code}).\n"
return log
except Exception as e:
log += f"❌ An error occurred while fetching FASTA data: {e}\n"
return log
def visualize_protein_3d(pdb_data: str, title="Protein 3D Structure"):
"""
Generates an interactive 3D protein visualization using py3Dmol.
"""
if not pdb_data:
return None, "Cannot generate 3D view: No PDB data provided."
try:
viewer = py3Dmol.view(width='100%', height=600)
viewer.setBackgroundColor('#1C1C1C')
viewer.addModel(pdb_data, "pdb")
viewer.setStyle({'cartoon': {'color': 'spectrum', 'thickness': 0.8}})
viewer.addSurface(py3Dmol.VDW, {'opacity': 0.3, 'color': 'lightblue'})
viewer.zoomTo()
html = viewer._make_html()
log = f"βœ… Generated 3D visualization for {title}."
return html, log
except Exception as e:
return None, f"❌ 3D visualization error: {e}"
def create_sample_molecules():
"""
Returns a dictionary of sample molecules in Name:SMILES format.
Expanded list for more comprehensive demonstration.
"""
return {
"Oseltamivir (Influenza)": "CCC(CC)O[C@H]1[C@H]([C@@H]([C@H](C=C1C(=O)OCC)N)N)NC(=O)C",
"Zanamivir (Influenza)": "C[C@H](N)C(=O)N[C@H]1[C@@H](O)C=C(O[C@H]1[C@@H](O)[C@H](O)CO)C(O)=O",
"Aspirin (Pain/Inflammation)": "CC(=O)OC1=CC=CC=C1C(=O)O",
"Ibuprofen (Pain/Inflammation)": "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O",
"Atorvastatin (Cholesterol)": "CC(C)c1c(C(=O)Nc2ccccc2)c(-c2ccccc2)c(c1)c1ccc(F)cc1", # Lipitor
"Metformin (Diabetes)": "CN(C)C(=N)N=C(N)N",
"Loratadine (Antihistamine)": "CCOC(=O)N1CCC(C(c2ccc(Cl)cc2)c2ccccn2)CC1",
"Imatinib (Gleevec - Cancer)": "Cc1ccc(NC(=O)c2cnc(C)s2)cc1-c1cnc(Nc2ccc(CN)cc2)nc1", # Complex structure, tyrosine kinase inhibitor
"Amlodipine (Hypertension)": "CCC(COC(=O)c1cnc(C)c(c1C)C(=O)OC)c1ccc(Cl)cc1", # Calcium channel blocker
"Rosuvastatin (Cholesterol)": "CC(C)c1ccc(cc1)S(=O)(=O)Nc1ncc(C)c(C(=O)O[C@H](C)[C@H](O)CC(=O)O)c1C", # Statin
}
def calculate_molecular_properties(smiles_dict: dict):
"""
Calculates key physicochemical properties for a dictionary of molecules using RDKit.
"""
properties = []
log = ""
for name, smiles in smiles_dict.items():
mol = Chem.MolFromSmiles(smiles)
if mol:
props = {
'Molecule': name,
'SMILES': smiles,
'MW': Descriptors.MolWt(mol),
'LogP': Descriptors.MolLogP(mol),
'HBD': Descriptors.NumHDonors(mol),
'HBA': Descriptors.NumHAcceptors(mol),
'TPSA': Descriptors.TPSA(mol),
'RotBonds': Descriptors.NumRotatableBonds(mol),
}
properties.append(props)
else:
log += f"⚠️ Invalid SMILES string skipped for {name}: {smiles}\n"
df = pd.DataFrame(properties).round(2)
log += f"βœ… Calculated properties for {len(df)} valid molecules.\n"
return df, log
def assess_drug_likeness(df: pd.DataFrame):
"""
Assesses drug-likeness based on Lipinski's Rule of Five.
This version returns a boolean for plotting and a formatted string for display.
"""
if df.empty:
return pd.DataFrame(), pd.DataFrame(), "Cannot assess drug-likeness: No properties data."
analysis_df = df.copy()
analysis_df['MW_OK'] = analysis_df['MW'] <= 500
analysis_df['LogP_OK'] = analysis_df['LogP'] <= 5
analysis_df['HBD_OK'] = analysis_df['HBD'] <= 5
analysis_df['HBA_OK'] = analysis_df['HBA'] <= 10
analysis_df['Lipinski_Violations'] = (~analysis_df[['MW_OK', 'LogP_OK', 'HBD_OK', 'HBA_OK']]).sum(axis=1)
analysis_df['Drug_Like'] = analysis_df['Lipinski_Violations'] <= 1
display_df = df.copy()
display_df['Lipinski_Violations'] = analysis_df['Lipinski_Violations']
display_df['Drug_Like'] = analysis_df['Drug_Like'].apply(lambda x: 'βœ… Yes' if x else '❌ No')
log = "βœ… Assessed drug-likeness using Lipinski's Rule of Five.\n"
return analysis_df, display_df, log
def plot_properties_dashboard(df: pd.DataFrame):
"""Creates a professional 2x2 dashboard of molecular property visualizations using Bokeh."""
from math import pi, cos, sin
if df.empty or 'Drug_Like' not in df.columns:
return None, "Cannot plot: No analysis data or 'Drug_Like' column missing."
if df['Drug_Like'].dtype != bool:
return None, f"Cannot plot: 'Drug_Like' column must be boolean, but it is {df['Drug_Like'].dtype}."
df['Category'] = df['Drug_Like'].apply(lambda x: 'Drug-Like' if x else 'Non-Drug-Like')
source = ColumnDataSource(df)
colors = ['#00D4AA', '#FF6B6B']
color_mapper = factor_cmap('Category', palette=colors, factors=["Drug-Like", "Non-Drug-Like"])
scatter_hover = HoverTool(tooltips=[
("Compound", "@Molecule"), ("MW", "@MW{0.0} Da"), ("LogP", "@LogP{0.00}"),
("HBD", "@HBD"), ("HBA", "@HBA"), ("TPSA", "@TPSA{0.0} Γ…Β²"), ("Category", "@Category")
])
plot_config = {
'sizing_mode': 'scale_width', 'aspect_ratio': 1,
'background_fill_color': None, 'border_fill_color': None,
'outline_line_color': '#333333', 'min_border_left': 50,
'min_border_right': 50, 'min_border_top': 50, 'min_border_bottom': 50
}
def style_plot(p, x_label, y_label, title):
"""Apply consistent professional styling to plots."""
p.title.text = title
p.title.text_color = '#FFFFFF'
p.title.text_font_size = '14pt'
p.title.text_font_style = 'bold'
p.xaxis.axis_label = x_label
p.yaxis.axis_label = y_label
p.axis.axis_label_text_color = '#CCCCCC'
p.axis.axis_label_text_font_size = '11pt'
p.axis.major_label_text_color = '#AAAAAA'
p.axis.major_label_text_font_size = '10pt'
p.grid.grid_line_color = '#2A2A2A'
p.grid.grid_line_alpha = 0.3
if p.legend:
p.legend.location = "top_right"
p.legend.background_fill_color = '#1A1A1A'
p.legend.background_fill_alpha = 0.8
p.legend.border_line_color = '#444444'
p.legend.label_text_color = '#FFFFFF'
p.legend.click_policy = "mute"
return p
p1 = figure(title="Molecular Weight vs LogP", tools=[scatter_hover, 'pan,wheel_zoom,box_zoom,reset,save'], **plot_config)
p1.scatter('MW', 'LogP', source=source, legend_group='Category',
color=color_mapper, size=12, alpha=0.8, line_color='white', line_width=0.5)
p1.line([500, 500], [df['LogP'].min()-0.5, df['LogP'].max()+0.5], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="MW ≀ 500")
p1.line([df['MW'].min()-50, df['MW'].max()+50], [5, 5], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="LogP ≀ 5")
style_plot(p1, "Molecular Weight (Da)", "LogP", "Lipinski Rule: MW vs LogP")
p2 = figure(title="Hydrogen Bonding Profile", tools=[scatter_hover, 'pan,wheel_zoom,box_zoom,reset,save'], **plot_config)
p2.scatter('HBD', 'HBA', source=source, legend_group='Category', color=color_mapper, size=12, alpha=0.8, line_color='white', line_width=0.5)
p2.line([5, 5], [df['HBA'].min()-1, df['HBA'].max()+1], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="HBD ≀ 5")
p2.line([df['HBD'].min()-1, df['HBD'].max()+1], [10, 10], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="HBA ≀ 10")
style_plot(p2, "Hydrogen Bond Donors", "Hydrogen Bond Acceptors", "Lipinski Rule: Hydrogen Bonding")
p3 = figure(title="Molecular Flexibility & Polarity", tools=[scatter_hover, 'pan,wheel_zoom,box_zoom,reset,save'], **plot_config)
p3.scatter('TPSA', 'RotBonds', source=source, legend_group='Category', color=color_mapper, size=12, alpha=0.8, line_color='white', line_width=0.5)
p3.line([140, 140], [df['RotBonds'].min()-1, df['RotBonds'].max()+1], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="TPSA ≀ 140")
p3.line([df['TPSA'].min()-10, df['TPSA'].max()+10], [10, 10], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="RotBonds ≀ 10")
style_plot(p3, "Topological Polar Surface Area (Γ…Β²)", "Rotatable Bonds", "Drug Permeability Indicators")
p4_config = plot_config.copy()
p4_config['tools'] = "hover"
p4_config.update({'x_range': (-1.0, 1.0), 'y_range': (-1.0, 1.0)})
p4 = figure(title="Drug-Likeness Distribution", **p4_config)
# Calculate percentages for the doughnut chart
counts = df['Category'].value_counts()
data = pd.DataFrame({'category': counts.index, 'value': counts.values})
data['angle'] = data['value']/data['value'].sum() * 2*pi
data['color'] = [colors[0] if cat == 'Drug-Like' else colors[1] for cat in counts.index]
data['percentage'] = (data['value'] / data['value'].sum() * 100).round(1)
# Calculate overall drug-like percentage for central text
total_compounds = len(df)
drug_like_count = df['Drug_Like'].sum()
drug_like_percentage = (drug_like_count / total_compounds * 100) if total_compounds > 0 else 0
wedge_renderer = p4.annular_wedge(x=0, y=0, inner_radius=0.25, outer_radius=0.45,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", line_width=3, fill_color='color',
legend_field='category', source=data)
# Updated HoverTool to display percentage
donut_hover = HoverTool(tooltips=[
("Category", "@category"),
("Count", "@value"),
("Percentage", "@percentage{%0.1f}%%") # Display percentage with one decimal place
], renderers=[wedge_renderer])
p4.add_tools(donut_hover)
# Updated central text to show Drug-Like percentage
p4.text([0], [0], text=[f"{total_compounds}\nCompounds\n({drug_like_percentage:.1f}% Drug-Like)"],
text_align="center", text_baseline="middle", text_color="white", text_font_size="10pt", text_font_style="bold")
style_plot(p4, "", "", "Compound Classification")
p4.axis.visible = False
p4.grid.visible = False
grid = gridplot([[p1, p2], [p3, p4]], sizing_mode='scale_width', toolbar_location='right', merge_tools=True)
return grid, "βœ… Generated enhanced molecular properties dashboard."
# ===== Phase 2 Functions =====
def get_phase2_molecules():
"""
Returns an expanded list of common drugs with corrected SMILES for virtual screening.
These are chosen to be well-known and diverse in their therapeutic areas.
"""
return {
'Paracetamol (Analgesic)': 'CC(=O)Nc1ccc(O)cc1',
'Ibuprofen (Pain/Inflammation)': 'CC(C)Cc1ccc(C(C)C(=O)O)cc1',
'Aspirin (Pain/Antiplatelet)': 'CC(=O)Oc1ccccc1C(=O)O',
'Naproxen (Pain/Inflammation)': 'C[C@H](C(=O)O)c1ccc2cc(OC)ccc2c1',
'Diazepam (Anxiolytic)': 'CN1C(=O)CN=C(c2ccccc2)c2cc(Cl)ccc12',
'Metformin (Diabetes)': 'CN(C)C(=N)N=C(N)N',
'Loratadine (Antihistamine)': 'CCOC(=O)N1CCC(C(c2ccc(Cl)cc2)c2ccccn2)CC1',
'Morphine (Opioid Analgesic)': 'C[N@]1CC[C@]23c4c5ccc(O)c4O[C@H]2[C@@H](O)C=C[C@H]3[C@H]1C5',
'Cetirizine (Antihistamine)': 'O=C(O)COCCOc1ccc(cc1)C(c1ccccc1)N1CCN(CC1)CCO',
'Fluoxetine (Antidepressant)': 'CNCCC(c1ccccc1)Oc1ccc(C(F)(F)F)cc1',
'Amoxicillin (Antibiotic)': 'C[C@@]1([C@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](N)c3ccc(O)cc3)C(=O)O)C',
'Atorvastatin (Cholesterol)': 'CC(C)c1c(C(=O)Nc2ccccc2)c(-c2ccccc2)c(c1)c1ccc(F)cc1',
'Ciprofloxacin (Antibiotic)': 'O=C(O)c1cn(C2CC2)c2cc(N3CCNCC3)c(F)cc12',
'Warfarin (Anticoagulant)': 'O=C(c1ccccc1)C(c1oc2ccccc2c1=O)C',
'Furosemide (Diuretic)': 'O=C(O)c1cc(Cl)c(NC2CO2)c(c1)S(=O)(=O)N',
'Sildenafil (Erectile Dysfunction)': 'CCCC1=NN(C)C(=NC1=O)c1cc(N2CCN(C)CC2)c(OC)cc1S(=O)(=O)C',
'Omeprazole (GERD)': 'COc1ccc(C)c(c1NC(=O)c1cn(Cc2ccc(OC)cc2)cn1)OC', # Proton pump inhibitor
'Losartan (Hypertension)': 'Cc1cnc(n1C)c1ccc(cc1)-c1ccccc1COC(=O)c1ccccc1', # Angiotensin Receptor Blocker
}
def simulate_virtual_screening(smiles_dict: dict):
np.random.seed(42)
scores = np.random.uniform(2.0, 9.8, len(smiles_dict))
results = [{'Molecule': name, 'SMILES': smiles, 'Predicted_Binding_Affinity': round(score, 2)} for (name, smiles), score in zip(smiles_dict.items(), scores)]
df = pd.DataFrame(results).sort_values('Predicted_Binding_Affinity', ascending=False).reset_index(drop=True)
df['Ranking'] = df.index + 1
return df, f"βœ… Simulated virtual screening for {len(df)} molecules.\n"
def predict_admet_properties(smiles_dict: dict):
admet_data = []
log = ""
for i, (name, smiles) in enumerate(smiles_dict.items()):
mol = Chem.MolFromSmiles(smiles)
if not mol: continue
mw, logp, hbd, hba = Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHDonors(mol), Descriptors.NumHAcceptors(mol)
np.random.seed(42 + i)
admet_data.append({'Molecule': name, 'MW': round(mw, 2), 'LogP': round(logp, 2), 'HBD': hbd, 'HBA': hba,
'Solubility (logS)': round(np.random.uniform(-4, -1), 2),
'Toxicity Risk': round(np.random.uniform(0.05, 0.4), 3),
'Lipinski Violations': sum([mw > 500, logp > 5, hbd > 5, hba > 10])})
df = pd.DataFrame(admet_data)
log += f"βœ… Predicted ADMET properties for {len(df)} molecules.\n"
return df, log
def visualize_molecule_2d_3d(smiles: str, name: str):
"""Generates a side-by-side 2D SVG and 3D py3Dmol HTML view for a single molecule."""
log = ""
try:
mol = Chem.MolFromSmiles(smiles)
if not mol: return f"<p>Invalid SMILES for {name}</p>", f"❌ Invalid SMILES for {name}"
drawer = Draw.rdMolDraw2D.MolDraw2DSVG(400, 300)
# Set dark theme colors for 2D drawing
drawer.drawOptions().clearBackground = False
drawer.drawOptions().addStereoAnnotation = True
drawer.drawOptions().baseFontSize = 0.8
drawer.drawOptions().circleAtoms = False
drawer.drawOptions().highlightColour = (1, 0.5, 0) # Orange for highlights
# Set colors for dark background visibility
drawer.drawOptions().backgroundColour = (0.11, 0.11, 0.11) # Dark background
drawer.drawOptions().symbolColour = (1, 1, 1) # White symbols
drawer.drawOptions().defaultColour = (1, 1, 1) # White default color
# Try to set annotation color (this might help with (R)/(S) labels)
try:
drawer.drawOptions().annotationColour = (1, 1, 1) # White annotations
except:
pass
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
svg_2d = drawer.GetDrawingText().replace('svg:', '')
# More aggressive SVG text color fixes - target all possible black text variations
# First, comprehensive string replacements
svg_2d = svg_2d.replace('stroke="black"', 'stroke="white"')
svg_2d = svg_2d.replace('fill="black"', 'fill="white"')
svg_2d = svg_2d.replace('stroke="#000000"', 'stroke="#FFFFFF"')
svg_2d = svg_2d.replace('fill="#000000"', 'fill="#FFFFFF"')
svg_2d = svg_2d.replace('stroke="#000"', 'stroke="#FFF"')
svg_2d = svg_2d.replace('fill="#000"', 'fill="#FFF"')
svg_2d = svg_2d.replace('stroke:black', 'stroke:white')
svg_2d = svg_2d.replace('fill:black', 'fill:white')
svg_2d = svg_2d.replace('stroke:#000000', 'stroke:#FFFFFF')
svg_2d = svg_2d.replace('fill:#000000', 'fill:#FFFFFF')
svg_2d = svg_2d.replace('stroke:#000', 'stroke:#FFF')
svg_2d = svg_2d.replace('fill:#000', 'fill="#FFF"')
svg_2d = svg_2d.replace('stroke="rgb(0,0,0)"', 'stroke="rgb(255,255,255)"')
svg_2d = svg_2d.replace('fill="rgb(0,0,0)"', 'fill="rgb(255,255,255)"')
svg_2d = svg_2d.replace('stroke:rgb(0,0,0)', 'stroke:rgb(255,255,255)')
svg_2d = svg_2d.replace('fill:rgb(0,0,0)', 'fill:rgb(255,255,255)')
svg_2d = svg_2d.replace('color="black"', 'color="white"')
svg_2d = svg_2d.replace('color:#000000', 'color:#FFFFFF')
svg_2d = svg_2d.replace('color:#000', 'color:#FFF')
# Aggressive regex-based fixes for all text elements
# Remove any existing fill attributes from text elements and add white fill
svg_2d = re.sub(r'<text([^>]*?)\s+fill="[^"]*"([^>]*?)>', r'<text\1\2 fill="white">', svg_2d)
svg_2d = re.sub(r'<text([^>]*?)(?<!fill="white")>', r'<text\1 fill="white">', svg_2d)
# Fix style attributes in text elements
svg_2d = re.sub(r'<text([^>]*?)style="([^"]*?)fill:\s*(?:black|#000000|#000|rgb\(0,0,0\))([^"]*?)"([^>]*?)>',
r'<text\1style="\2fill:white\3"\4>', svg_2d)
# If text elements don't have any fill specified, ensure they get white
svg_2d = re.sub(r'<text(?![^>]*fill=)([^>]*?)>', r'<text fill="white"\1>', svg_2d)
# Clean up any duplicate fill attributes
svg_2d = re.sub(r'fill="white"\s+fill="white"', 'fill="white"', svg_2d)
# Final catch-all: replace any remaining black in the entire SVG
svg_2d = re.sub(r'\bblack\b', 'white', svg_2d)
svg_2d = re.sub(r'#000000', '#FFFFFF', svg_2d)
svg_2d = re.sub(r'#000\b', '#FFF', svg_2d)
svg_2d = re.sub(r'rgb\(0,\s*0,\s*0\)', 'rgb(255,255,255)', svg_2d)
# Embed the SVG within a div with a dark background for consistency
svg_2d = f'<div style="background-color: #1C1C1C; padding: 10px; border-radius: 5px;">{svg_2d}</div>'
mol_3d = Chem.AddHs(mol)
AllChem.EmbedMolecule(mol_3d, randomSeed=42)
AllChem.MMFFOptimizeMolecule(mol_3d)
sdf_data = Chem.MolToMolBlock(mol_3d)
viewer = py3Dmol.view(width=400, height=300)
viewer.setBackgroundColor('#1C1C1C')
viewer.addModel(sdf_data, "sdf")
viewer.setStyle({'stick': {}, 'sphere': {'scale': 0.25}})
viewer.zoomTo()
html_3d = viewer._make_html()
combined_html = f"""
<div style="display: flex; flex-direction: row; align-items: center; justify-content: space-around; border: 1px solid #444; border-radius: 10px; padding: 10px; margin-bottom: 10px; background-color: #2b2b2b;">
<div style="text-align: center;">
<h4 style="color: white; font-family: 'Roboto', sans-serif;">{name} (2D Structure)</h4>
{svg_2d}
</div>
<div style="text-align: center;">
<h4 style="color: white; font-family: 'Roboto', sans-serif;">{name} (3D Interactive)</h4>
{html_3d}
</div>
</div>
"""
log += f"βœ… Generated 2D/3D view for {name}.\n"
return combined_html, log
except Exception as e:
return f"<p>Error visualizing {name}: {e}</p>", f"❌ Error visualizing {name}: {e}"
def visualize_protein_ligand_interaction(pdb_data: str, pdb_id: str, ligand_resn: str):
"""
Generates a protein-ligand interaction visualization using py3Dmol.
"""
if not pdb_data:
return None, "Cannot generate interaction view: No PDB data provided."
try:
viewer = py3Dmol.view(width='100%', height=650)
viewer.setBackgroundColor('#1C1C1C')
# Add the protein structure
viewer.addModel(pdb_data, "pdb")
# Style the protein (cartoon representation)
viewer.setStyle({'cartoon': {'color': 'lightblue', 'opacity': 0.8}})
# Highlight the ligand if specified
if ligand_resn:
viewer.addStyle({'resn': ligand_resn}, {'stick': {'colorscheme': 'greenCarbon', 'radius': 0.2}})
viewer.addStyle({'resn': ligand_resn}, {'sphere': {'scale': 0.3, 'colorscheme': 'greenCarbon'}})
# Add surface representation for binding site
viewer.addSurface(py3Dmol.VDW, {'opacity': 0.2, 'color': 'white'}, {'resn': ligand_resn})
viewer.zoomTo({'resn': ligand_resn} if ligand_resn else {})
html = viewer._make_html()
log = f"βœ… Generated protein-ligand interaction view for {pdb_id} with ligand {ligand_resn}."
return html, log
except Exception as e:
return None, f"❌ Interaction visualization error: {e}"
# ===== Phase 3 Functions =====
def get_phase3_molecules():
"""
Returns an expanded list of lead compounds for optimization.
These are chosen to be representative of active pharmaceutical ingredients or advanced candidates.
"""
return {
'Oseltamivir (Influenza)': 'CCC(CC)O[C@H]1[C@H]([C@@H]([C@H](C=C1C(=O)OCC)N)N)NC(=O)C',
'Aspirin (Pain/Antiplatelet)': 'CC(=O)OC1=CC=CC=C1C(=O)O',
'Remdesivir (Antiviral)': 'CCC(CC)COC(=O)[C@@H](C)N[P@](=O)(OC[C@@H]1O[C@](C#N)([C@H]([C@@H]1O)O)C2=CC=C3N2N=CN=C3N)OC4=CC=CC=C4',
'Penicillin G (Antibiotic)': 'CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)CC3=CC=CC=C3)C(=O)O)C',
"Imatinib (Gleevec - Cancer)": "Cc1ccc(NC(=O)c2cnc(C)s2)cc1-c1cnc(Nc2ccc(CN)cc2)nc1",
"Sorafenib (Kinase Inhibitor)": "Clc1cccc(Cl)c1OC(=O)Nc1ccc(nc1)NC(=O)C(C)(C)C", # Multi-kinase inhibitor for cancer
# CORRECTED SMILES for Venetoclax
"Venetoclax (BCL-2 Inhibitor)": "CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C",
"Dasatinib (Kinase Inhibitor)": "CC1=NC(=NC=C1SC2=NC=C(C=N2)C(=O)NC3=CC=CC(=C3)N)C(=O)O", # Multi-kinase inhibitor for leukemia
}
def calculate_comprehensive_properties(smiles_dict: dict):
analysis = []
log = ""
for name, smiles in smiles_dict.items():
mol = Chem.MolFromSmiles(smiles)
if not mol: continue
mw, logp, hbd, hba = Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHDonors(mol), Descriptors.NumHAcceptors(mol)
violations = sum([mw > 500, logp > 5, hbd > 5, hba > 10])
analysis.append({'Compound': name, 'Molecular_Weight': mw, 'LogP': logp, 'HBD': hbd, 'HBA': hba,
'TPSA': Descriptors.TPSA(mol), 'Rotatable_Bonds': Descriptors.NumRotatableBonds(mol),
'Aromatic_Rings': Descriptors.NumAromaticRings(mol),
'Lipinski_Violations': violations,
'Drug_Like': 'βœ… Yes' if violations <= 1 else '❌ No'})
df = pd.DataFrame(analysis).round(2)
log += f"βœ… Calculated comprehensive properties for {len(df)} compounds.\n"
return df, log
def predict_toxicity(properties_df: pd.DataFrame):
if properties_df.empty: return pd.DataFrame(), "Cannot predict toxicity: No properties data."
np.random.seed(42)
n_compounds = 500
training_data = pd.DataFrame({'molecular_weight': np.random.normal(400, 100, n_compounds),
'logp': np.random.normal(2.5, 1.5, n_compounds),
'tpsa': np.random.normal(80, 30, n_compounds),
'rotatable_bonds': np.random.randint(0, 15, n_compounds),
'aromatic_rings': np.random.randint(0, 5, n_compounds)})
toxicity_score = ((training_data['molecular_weight'] > 550) * 0.4 + (abs(training_data['logp']) > 4.5) * 0.4 + np.random.random(n_compounds) * 0.2)
training_data['toxic'] = (toxicity_score > 0.5).astype(int)
features = ['molecular_weight', 'logp', 'tpsa', 'rotatable_bonds', 'aromatic_rings']
rf_model = RandomForestClassifier(n_estimators=50, random_state=42)
rf_model.fit(training_data[features], training_data['toxic'])
X_pred = properties_df[['Molecular_Weight', 'LogP', 'TPSA', 'Rotatable_Bonds', 'Aromatic_Rings']]
X_pred.columns = features
toxicity_prob = rf_model.predict_proba(X_pred)[:, 1]
results_df = properties_df[['Compound']].copy()
results_df['Toxicity_Probability'] = np.round(toxicity_prob, 3)
results_df['Predicted_Risk'] = ["🟒 LOW" if p < 0.3 else "🟑 MODERATE" if p < 0.7 else "πŸ”΄ HIGH" for p in toxicity_prob]
return results_df, "βœ… Predicted toxicity using a pre-trained simulation model.\n"
# ===== Phase 4 Functions =====
def get_regulatory_summary():
summary = {'Component': ['Data Governance', 'Model Architecture', 'Model Validation', 'Interpretability'],
'Description': ['Data sourced from ChEMBL, PDB, GISAID. Bias assessed via geographic distribution analysis.',
'Graph Convolutional Network (Target ID), Random Forest (ADMET), K-Means (Patient Stratification).',
'ADMET Model validated with AUC-ROC > 0.85 on an independent test set.',
'SHAP used for patient stratification model outputs.']}
return pd.DataFrame(summary), "βœ… Generated AI/ML documentation summary."
def simulate_rwd_analysis(adverse_event_text):
"""
Analyzes simulated adverse event text and generates a DataFrame and Bokeh plot.
"""
np.random.seed(42)
base_events = list(np.random.choice(
['headache', 'nausea', 'fatigue', 'dizziness', 'rash', 'fever', 'diarrhea', 'constipation', 'insomnia', 'muscle pain'],
100,
p=[0.2, 0.15, 0.12, 0.12, 0.1, 0.08, 0.08, 0.05, 0.05, 0.05] # Adjusted probabilities for new events
))
user_terms = [word.lower() for word in re.findall(r'\b[a-zA-Z]{3,}\b', adverse_event_text)]
all_events = base_events + user_terms
events_df = pd.DataFrame(all_events, columns=['Adverse_Event'])
event_counts = events_df['Adverse_Event'].value_counts().nlargest(10).sort_values(ascending=False)
results_df = event_counts.reset_index()
results_df.columns = ['Adverse_Event', 'Frequency']
log = f"βœ… Analyzed {len(all_events)} total event reports. Identified {len(event_counts)} unique adverse events for plotting.\n"
# Create Bokeh Plot
source = ColumnDataSource(results_df)
y_range = results_df['Adverse_Event'].tolist()[::-1]
hover = HoverTool(tooltips=[("Event", "@Adverse_Event"),("Frequency", "@Frequency")])
p = figure(
y_range=y_range, height=450, title="Top 10 Reported Adverse Events",
sizing_mode='stretch_width', tools="pan,wheel_zoom,box_zoom,reset,save",
)
p.add_tools(hover)
p.hbar(
y='Adverse_Event', right='Frequency', source=source, height=0.7,
color='#00A0FF', line_color='white', legend_label="Event Frequency"
)
# Style the plot for a dark theme
p.background_fill_color = "#1C1C1C"
p.border_fill_color = "#1C1C1C"
p.outline_line_color = '#333333'
p.title.text_color = "white"
p.title.text_font_size = '16pt'
p.title.align = "center"
p.xaxis.axis_label = "Frequency Count"
p.yaxis.axis_label = "Adverse Event"
p.axis.axis_label_text_color = "#CCCCCC"
p.axis.axis_label_text_font_size = "12pt"
p.axis.major_label_text_color = "#AAAAAA"
p.axis.major_label_text_font_size = "10pt"
p.grid.grid_line_alpha = 0.3
p.grid.grid_line_color = "#444444"
p.x_range.start = 0
p.legend.location = "top_right"
p.legend.background_fill_color = "#2A2A2A"
p.legend.background_fill_alpha = 0.7
p.legend.border_line_color = "#444444"
p.legend.label_text_color = "white"
return results_df, p, log
def get_ethical_framework():
framework = {'Principle': ['Beneficence', 'Non-maleficence', 'Fairness', 'Transparency'],
'Implementation Strategy': [
'AI models prioritize patient outcomes and clinical efficacy.',
'Toxicity prediction and pharmacovigilance models aim to minimize patient harm.',
'Algorithms are audited for demographic bias in training data and predictions.',
'Model cards and SHAP values are provided for key decision-making processes.'
]}
return pd.DataFrame(framework), "βœ… Generated Ethical AI Framework summary."
# --- 3. Streamlit UI Layout ---
# Initialize session state variables
if 'active_tab' not in st.session_state: st.session_state.active_tab = "Phase 1: Target Identification"
if 'log_p1' not in st.session_state: st.session_state.log_p1 = "Status logs will appear here."
if 'log_p2' not in st.session_state: st.session_state.log_p2 = "Status logs will appear here."
if 'log_p3' not in st.session_state: st.session_state.log_p3 = "Status logs will appear here."
if 'log_p4' not in st.session_state: st.session_state.log_p4 = "Status logs will appear here."
if 'results_p1' not in st.session_state: st.session_state.results_p1 = {}
if 'results_p2' not in st.session_state: st.session_state.results_p2 = {}
if 'results_p3' not in st.session_state: st.session_state.results_p3 = {}
if 'results_p4' not in st.session_state: st.session_state.results_p4 = {}
# --- Header ---
st.title("πŸ”¬ AI-Powered Drug Discovery Pipeline")
st.markdown("An integrated application demonstrating a four-phase computational drug discovery workflow.")
# --- Main Tabs for Each Phase ---
tab1, tab2, tab3, tab4 = st.tabs([
"**Phase 1:** Target Identification",
"**Phase 2:** Hit Discovery & ADMET",
"**Phase 3:** Lead Optimization",
"**Phase 4:** Pre-clinical & RWE"
])
# --- Phase 1: Target Identification ---
with tab1:
st.header("Phase 1: Target Identification & Initial Analysis")
st.markdown("""
In this initial phase, we identify and analyze a biological target (e.g., a protein) implicated in a disease.
We fetch its 3D structure and sequence data, then evaluate a set of initial compounds for their drug-like properties.
""")
st.subheader("Inputs & Controls")
# Updated PDB ID options
pdb_options = {
"Neuraminidase (Influenza - 2HU4)": "2HU4",
"KRAS G12D (Oncogenic Target - 7XKJ)": "7XKJ", # Bound to MRTX-1133
"SARS-CoV-2 Mpro (Antiviral Target - 8HUR)": "8HUR", # Bound to Ensitrelvir
"EGFR Kinase (Cancer Target - 1M17)": "1M17", # Bound to Erlotinib
}
selected_pdb_name = st.selectbox("Select PDB ID:", options=list(pdb_options.keys()), index=0)
pdb_id_input = pdb_options[selected_pdb_name]
# Updated NCBI Protein ID options
protein_options = {
"Neuraminidase (P03468)": "P03468", # Influenza A virus (A/PR/8/34)
"KRAS (P01116)": "P01116", # Human KRAS
"SARS-CoV-2 Main Protease (P0DTD1)": "P0DTD1", # SARS-CoV-2 Mpro
"EGFR (P00533)": "P00533", # Human Epidermal Growth Factor Receptor
}
selected_protein_name = st.selectbox("Select NCBI Protein ID:", options=list(protein_options.keys()), index=0)
protein_id_input = protein_options[selected_protein_name]
st.markdown("---")
st.write("**Analyze Sample Compounds:**")
sample_molecules = create_sample_molecules()
selected_molecules = st.multiselect(
"Select from known drugs:",
options=list(sample_molecules.keys()),
default=["Oseltamivir (Influenza)", "Aspirin (Pain/Inflammation)", "Imatinib (Gleevec - Cancer)"] # Adjusted default selection
)
if st.button("πŸš€ Run Phase 1 Analysis", key="run_p1"):
with st.spinner("Fetching data and calculating properties..."):
full_log = "--- Phase 1 Analysis Started ---\n"
pdb_data, log_pdb = fetch_pdb_structure(pdb_id_input)
full_log += log_pdb
log_fasta = fetch_fasta_sequence(protein_id_input)
full_log += log_fasta
smiles_to_analyze = {name: sample_molecules[name] for name in selected_molecules}
properties_df, log_props = calculate_molecular_properties(smiles_to_analyze)
full_log += log_props
analysis_df, display_df, log_likeness = assess_drug_likeness(properties_df)
full_log += log_likeness
protein_view_html, log_3d = visualize_protein_3d(pdb_data, title=f"PDB: {pdb_id_input}")
full_log += log_3d
dashboard_plot, log_dash = plot_properties_dashboard(analysis_df)
full_log += log_dash
full_log += "\n--- Phase 1 Analysis Complete ---"
st.session_state.log_p1 = full_log
st.session_state.results_p1 = {
'pdb_data': pdb_data,
'protein_view': protein_view_html,
'properties_df': display_df,
'dashboard': dashboard_plot
}
st.text_area("Status & Logs", st.session_state.log_p1, height=200, key="log_p1_area")
st.subheader("Results")
if not st.session_state.results_p1:
st.info("Click 'Run Phase 1 Analysis' to generate and display results.")
else:
res1 = st.session_state.results_p1
p1_tabs = st.tabs(["Protein Structure", "Compound Properties Dashboard"])
with p1_tabs[0]:
st.subheader(f"3D Structure for PDB ID: {pdb_id_input}")
if res1.get('protein_view'):
st.components.v1.html(res1['protein_view'], height=600, scrolling=False)
else:
st.warning("Could not display 3D structure. Check PDB ID and logs.")
with p1_tabs[1]:
st.subheader("Physicochemical Properties Analysis")
# The data table is now displayed *before* the dashboard.
st.dataframe(res1.get('properties_df', pd.DataFrame()), use_container_width=True, hide_index=True)
if res1.get('dashboard'):
st.bokeh_chart(res1['dashboard'], use_container_width=True)
# --- Phase 2: Hit Discovery & ADMET ---
with tab2:
st.header("Phase 2: Virtual Screening & Early ADMET")
st.markdown("""
This phase simulates a virtual screening process to identify 'hits' from a larger library of compounds.
We predict their binding affinity to the target and assess their basic ADMET (Absorption, Distribution,
Metabolism, Excretion, Toxicity) profiles.
""")
st.subheader("Inputs & Controls")
p2_molecules = get_phase2_molecules()
st.info(f"A library of {len(p2_molecules)} compounds is ready for screening.")
# Updated PDB ID for Interaction options
interaction_pdb_options = {
"Neuraminidase + Oseltamivir (2HU4)": {"pdb": "2HU4", "ligand": "G39"},
"KRAS G12C + MRTX-1133 (7XKJ)": {"pdb": "7XKJ", "ligand": "M13"},
"SARS-CoV-2 Mpro + Ensitrelvir (8HUR)": {"pdb": "8HUR", "ligand": "X77"},
"EGFR + Erlotinib (1M17)": {"pdb": "1M17", "ligand": "ERL"},
}
selected_interaction_pdb_name = st.selectbox(
"Select PDB ID for Interaction:",
options=list(interaction_pdb_options.keys()),
index=0 # Default to Neuraminidase
)
p2_pdb_id = interaction_pdb_options[selected_interaction_pdb_name]["pdb"]
p2_ligand_resn = interaction_pdb_options[selected_interaction_pdb_name]["ligand"]
st.write(f"Selected PDB: `{p2_pdb_id}`, Selected Ligand Residue Name: `{p2_ligand_resn}`")
if st.button("πŸš€ Run Phase 2 Analysis", key="run_p2"):
with st.spinner("Running virtual screening and ADMET predictions..."):
full_log = "--- Phase 2 Analysis Started ---\n"
screening_df, log_screen = simulate_virtual_screening(p2_molecules)
full_log += log_screen
admet_df, log_admet = predict_admet_properties(p2_molecules)
full_log += log_admet
merged_df = pd.merge(screening_df, admet_df, on="Molecule")
pdb_data, log_pdb_p2 = fetch_pdb_structure(p2_pdb_id)
full_log += log_pdb_p2
interaction_view, log_interact = visualize_protein_ligand_interaction(pdb_data, p2_pdb_id, p2_ligand_resn)
full_log += log_interact
full_log += "\n--- Phase 2 Analysis Complete ---"
st.session_state.log_p2 = full_log
st.session_state.results_p2 = {
'merged_df': merged_df,
'interaction_view': interaction_view
}
st.text_area("Status & Logs", st.session_state.log_p2, height=200, key="log_p2_area")
st.subheader("Results")
if not st.session_state.results_p2:
st.info("Click 'Run Phase 2 Analysis' to generate and display results.")
else:
res2 = st.session_state.results_p2
p2_tabs = st.tabs(["Screening & ADMET Results", "Protein-Ligand Interaction"])
with p2_tabs[0]:
st.subheader("Virtual Screening & Early ADMET Predictions")
st.dataframe(res2.get('merged_df', pd.DataFrame()), use_container_width=True, hide_index=True)
with p2_tabs[1]:
st.subheader(f"Simulated Interaction for PDB {p2_pdb_id} with Ligand {p2_ligand_resn}")
if res2.get('interaction_view'):
st.components.v1.html(res2['interaction_view'], height=700, scrolling=False)
else:
st.warning("Could not display interaction view. Check inputs and logs.")
# --- Phase 3: Lead Optimization ---
with tab3:
st.header("Phase 3: Lead Compound Optimization")
st.markdown("""
In lead optimization, promising 'hit' compounds are refined to improve their efficacy and safety.
Here, we analyze a few selected lead candidates, perform more detailed property calculations,
and predict their toxicity risk using a simulated machine learning model.
""")
st.subheader("Inputs & Controls")
p3_molecules = get_phase3_molecules()
selected_leads = st.multiselect(
"Select lead compounds to optimize:",
options=list(p3_molecules.keys()),
default=['Oseltamivir (Influenza)', 'Remdesivir (Antiviral)', 'Imatinib (Gleevec - Cancer)'] # Adjusted default selection
)
if st.button("πŸš€ Run Phase 3 Analysis", key="run_p3"):
with st.spinner("Analyzing lead compounds and predicting toxicity..."):
full_log = "--- Phase 3 Analysis Started ---\n"
smiles_to_analyze_p3 = {name: p3_molecules[name] for name in selected_leads}
comp_props_df, log_comp = calculate_comprehensive_properties(smiles_to_analyze_p3)
full_log += log_comp
toxicity_df, log_tox = predict_toxicity(comp_props_df)
full_log += log_tox
final_df = pd.merge(comp_props_df, toxicity_df, on="Compound")
visuals = {}
for name, smiles in smiles_to_analyze_p3.items():
html_view, log_vis = visualize_molecule_2d_3d(smiles, name)
visuals[name] = html_view
full_log += log_vis
full_log += "\n--- Phase 3 Analysis Complete ---"
st.session_state.log_p3 = full_log
st.session_state.results_p3 = {
'final_df': final_df,
'visuals': visuals
}
st.text_area("Status & Logs", st.session_state.log_p3, height=200, key="log_p3_area")
st.subheader("Results")
if not st.session_state.results_p3:
st.info("Click 'Run Phase 3 Analysis' to generate and display results.")
else:
# Corrected from results_3 to results_p3
res3 = st.session_state.results_p3
st.subheader("Lead Compound Analysis & Toxicity Prediction")
st.dataframe(res3.get('final_df', pd.DataFrame()), use_container_width=True, hide_index=True)
st.subheader("2D & 3D Molecular Structures")
for name, visual_html in res3.get('visuals', {}).items():
st.components.v1.html(visual_html, height=430, scrolling=False)
# --- Phase 4: Pre-clinical & RWE ---
with tab4:
st.header("Phase 4: Simulated Pre-clinical & Real-World Evidence (RWE)")
st.markdown("""
This final phase simulates post-market analysis. We analyze text data for adverse events (pharmacovigilance)
and present documentation related to the AI models and ethical frameworks that would be required for regulatory submission.
""")
st.subheader("Inputs & Controls")
rwd_input = st.text_area(
"Enter simulated adverse event report text:",
"Patient reports include instances of headache, severe nausea, and occasional skin rash. Some noted dizziness after taking the medication.",
height=150
)
if st.button("πŸš€ Run Phase 4 Analysis", key="run_p4"):
with st.spinner("Analyzing real-world data and generating reports..."):
full_log = "--- Phase 4 Analysis Started ---\n"
reg_df, log_reg = get_regulatory_summary()
full_log += log_reg
eth_df, log_eth = get_ethical_framework()
full_log += log_eth
rwd_df, plot_bar, log_rwd = simulate_rwd_analysis(rwd_input)
full_log += log_rwd
full_log += "\n--- Phase 4 Analysis Complete ---"
st.session_state.log_p4 = full_log
st.session_state.results_p4 = {
'rwd_df': rwd_df,
'plot_bar': plot_bar,
'reg_df': reg_df,
'eth_df': eth_df
}
st.text_area("Status & Logs", st.session_state.log_p4, height=200, key="log_p4_area")
st.subheader("Results")
if not st.session_state.results_p4:
st.info("Click 'Run Phase 4 Analysis' to generate and display results.")
else:
res4 = st.session_state.results_p4
p4_tabs = st.tabs(["Pharmacovigilance Analysis", "Regulatory & Ethical Frameworks"])
with p4_tabs[0]:
st.subheader("Simulated Adverse Event Analysis")
if res4.get('plot_bar'):
st.bokeh_chart(res4['plot_bar'], use_container_width=True)
st.dataframe(res4.get('rwd_df', pd.DataFrame()), use_container_width=True, hide_index=True)
with p4_tabs[1]:
st.subheader("AI/ML Model Regulatory Summary")
st.dataframe(res4.get('reg_df', pd.DataFrame()), use_container_width=True, hide_index=True)
st.subheader("Ethical AI Framework")
st.dataframe(res4.get('eth_df', pd.DataFrame()), use_container_width=True, hide_index=True)