File size: 47,283 Bytes
f357ed3 9916f6b f357ed3 9916f6b f357ed3 6076efe f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 6076efe f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 ed20d10 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 d1eca82 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 f357ed3 430eb42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
# AI-Powered Drug Discovery Pipeline Streamlit Application
# This script integrates four phases of drug discovery into a single, interactive web app.
import streamlit as st
import pandas as pd
import numpy as np
import requests
import io
import re
from PIL import Image
import base64
# RDKit and BioPython imports
from rdkit import Chem
from rdkit.Chem import Draw, AllChem, Descriptors
from Bio import SeqIO
# Scikit-learn for ML models
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 3D Visualization
import py3Dmol
# Bokeh plotting
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.layouts import gridplot
from bokeh.transform import factor_cmap, cumsum
from math import pi
# Suppress warnings for cleaner output
import warnings
warnings.filterwarnings('ignore')
# --- Page Configuration ---
st.set_page_config(
page_title="AI Drug Discovery Pipeline",
page_icon="π¬",
layout="wide",
initial_sidebar_state="collapsed",
)
# Custom CSS for a professional, dark theme
def apply_custom_styling():
st.markdown(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
html, body, [class*="st-"] {
font-family: 'Roboto', sans-serif;
}
.stApp {
background-color: rgb(28, 28, 28);
color: white;
}
/* Tab styles */
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background: none;
border-radius: 0px;
border-bottom: 2px solid #333;
padding: 10px 4px;
color: #AAA;
}
.stTabs [data-baseweb="tab"]:hover {
background: #222;
color: #FFF;
}
.stTabs [aria-selected="true"] {
border-bottom: 2px solid #00A0FF; /* Highlight color for active tab */
color: #FFF;
}
/* Button styles */
.stButton>button {
border-color: #00A0FF;
color: #00A0FF;
}
.stButton>button:hover {
border-color: #FFF;
color: #FFF;
background-color: #00A0FF;
}
/* Ensure headers are white */
h1, h2, h3, h4, h5, h6 {
color: white !important;
}
</style>
""",
unsafe_allow_html=True
)
apply_custom_styling()
# --- 2. Core Functions from All Phases ---
# These functions are adapted from the provided Python scripts.
# ===== Phase 1 Functions =====
@st.cache_data(show_spinner="Fetching PDB structure...")
def fetch_pdb_structure(pdb_id: str):
"""
Fetches a PDB file and returns its content.
"""
log = ""
try:
url = f"https://files.rcsb.org/download/{pdb_id}.pdb"
response = requests.get(url, timeout=20)
if response.status_code == 200:
log += f"β
Successfully fetched PDB data for {pdb_id}.\n"
return response.text, log
else:
log += f"β οΈ Failed to fetch PDB file for {pdb_id} (Status: {response.status_code}). Please check the PDB ID and try again.\n"
return None, log
except Exception as e:
log += f"β An error occurred while fetching PDB data: {e}\n"
return None, log
@st.cache_data(show_spinner="Fetching FASTA sequence...")
def fetch_fasta_sequence(protein_id: str):
"""
Fetches a protein's FASTA sequence from NCBI.
"""
log = ""
try:
url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id={protein_id}&rettype=fasta&retmode=text"
response = requests.get(url, timeout=20)
if response.status_code == 200:
parsed_fasta = SeqIO.read(io.StringIO(response.text), "fasta")
log += f"β
Successfully fetched FASTA sequence for {protein_id}.\n\n"
log += f"--- Protein Sequence Information ---\n"
log += f"ID: {parsed_fasta.id}\n"
log += f"Description: {parsed_fasta.description}\n"
log += f"Sequence Length: {len(parsed_fasta.seq)}\n"
log += f"Sequence Preview: {parsed_fasta.seq[:60]}...\n"
return log
else:
log += f"β οΈ Failed to fetch FASTA file (Status: {response.status_code}).\n"
return log
except Exception as e:
log += f"β An error occurred while fetching FASTA data: {e}\n"
return log
def visualize_protein_3d(pdb_data: str, title="Protein 3D Structure"):
"""
Generates an interactive 3D protein visualization using py3Dmol.
"""
if not pdb_data:
return None, "Cannot generate 3D view: No PDB data provided."
try:
viewer = py3Dmol.view(width='100%', height=600)
viewer.setBackgroundColor('#1C1C1C')
viewer.addModel(pdb_data, "pdb")
viewer.setStyle({'cartoon': {'color': 'spectrum', 'thickness': 0.8}})
viewer.addSurface(py3Dmol.VDW, {'opacity': 0.3, 'color': 'lightblue'})
viewer.zoomTo()
html = viewer._make_html()
log = f"β
Generated 3D visualization for {title}."
return html, log
except Exception as e:
return None, f"β 3D visualization error: {e}"
def create_sample_molecules():
"""
Returns a dictionary of sample molecules in Name:SMILES format.
Expanded list for more comprehensive demonstration.
"""
return {
"Oseltamivir (Influenza)": "CCC(CC)O[C@H]1[C@H]([C@@H]([C@H](C=C1C(=O)OCC)N)N)NC(=O)C",
"Zanamivir (Influenza)": "C[C@H](N)C(=O)N[C@H]1[C@@H](O)C=C(O[C@H]1[C@@H](O)[C@H](O)CO)C(O)=O",
"Aspirin (Pain/Inflammation)": "CC(=O)OC1=CC=CC=C1C(=O)O",
"Ibuprofen (Pain/Inflammation)": "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O",
"Atorvastatin (Cholesterol)": "CC(C)c1c(C(=O)Nc2ccccc2)c(-c2ccccc2)c(c1)c1ccc(F)cc1", # Lipitor
"Metformin (Diabetes)": "CN(C)C(=N)N=C(N)N",
"Loratadine (Antihistamine)": "CCOC(=O)N1CCC(C(c2ccc(Cl)cc2)c2ccccn2)CC1",
"Imatinib (Gleevec - Cancer)": "Cc1ccc(NC(=O)c2cnc(C)s2)cc1-c1cnc(Nc2ccc(CN)cc2)nc1", # Complex structure, tyrosine kinase inhibitor
"Amlodipine (Hypertension)": "CCC(COC(=O)c1cnc(C)c(c1C)C(=O)OC)c1ccc(Cl)cc1", # Calcium channel blocker
"Rosuvastatin (Cholesterol)": "CC(C)c1ccc(cc1)S(=O)(=O)Nc1ncc(C)c(C(=O)O[C@H](C)[C@H](O)CC(=O)O)c1C", # Statin
}
def calculate_molecular_properties(smiles_dict: dict):
"""
Calculates key physicochemical properties for a dictionary of molecules using RDKit.
"""
properties = []
log = ""
for name, smiles in smiles_dict.items():
mol = Chem.MolFromSmiles(smiles)
if mol:
props = {
'Molecule': name,
'SMILES': smiles,
'MW': Descriptors.MolWt(mol),
'LogP': Descriptors.MolLogP(mol),
'HBD': Descriptors.NumHDonors(mol),
'HBA': Descriptors.NumHAcceptors(mol),
'TPSA': Descriptors.TPSA(mol),
'RotBonds': Descriptors.NumRotatableBonds(mol),
}
properties.append(props)
else:
log += f"β οΈ Invalid SMILES string skipped for {name}: {smiles}\n"
df = pd.DataFrame(properties).round(2)
log += f"β
Calculated properties for {len(df)} valid molecules.\n"
return df, log
def assess_drug_likeness(df: pd.DataFrame):
"""
Assesses drug-likeness based on Lipinski's Rule of Five.
This version returns a boolean for plotting and a formatted string for display.
"""
if df.empty:
return pd.DataFrame(), pd.DataFrame(), "Cannot assess drug-likeness: No properties data."
analysis_df = df.copy()
analysis_df['MW_OK'] = analysis_df['MW'] <= 500
analysis_df['LogP_OK'] = analysis_df['LogP'] <= 5
analysis_df['HBD_OK'] = analysis_df['HBD'] <= 5
analysis_df['HBA_OK'] = analysis_df['HBA'] <= 10
analysis_df['Lipinski_Violations'] = (~analysis_df[['MW_OK', 'LogP_OK', 'HBD_OK', 'HBA_OK']]).sum(axis=1)
analysis_df['Drug_Like'] = analysis_df['Lipinski_Violations'] <= 1
display_df = df.copy()
display_df['Lipinski_Violations'] = analysis_df['Lipinski_Violations']
display_df['Drug_Like'] = analysis_df['Drug_Like'].apply(lambda x: 'β
Yes' if x else 'β No')
log = "β
Assessed drug-likeness using Lipinski's Rule of Five.\n"
return analysis_df, display_df, log
def plot_properties_dashboard(df: pd.DataFrame):
"""Creates a professional 2x2 dashboard of molecular property visualizations using Bokeh."""
from math import pi, cos, sin
if df.empty or 'Drug_Like' not in df.columns:
return None, "Cannot plot: No analysis data or 'Drug_Like' column missing."
if df['Drug_Like'].dtype != bool:
return None, f"Cannot plot: 'Drug_Like' column must be boolean, but it is {df['Drug_Like'].dtype}."
df['Category'] = df['Drug_Like'].apply(lambda x: 'Drug-Like' if x else 'Non-Drug-Like')
source = ColumnDataSource(df)
colors = ['#00D4AA', '#FF6B6B']
color_mapper = factor_cmap('Category', palette=colors, factors=["Drug-Like", "Non-Drug-Like"])
scatter_hover = HoverTool(tooltips=[
("Compound", "@Molecule"), ("MW", "@MW{0.0} Da"), ("LogP", "@LogP{0.00}"),
("HBD", "@HBD"), ("HBA", "@HBA"), ("TPSA", "@TPSA{0.0} Γ
Β²"), ("Category", "@Category")
])
plot_config = {
'sizing_mode': 'scale_width', 'aspect_ratio': 1,
'background_fill_color': None, 'border_fill_color': None,
'outline_line_color': '#333333', 'min_border_left': 50,
'min_border_right': 50, 'min_border_top': 50, 'min_border_bottom': 50
}
def style_plot(p, x_label, y_label, title):
"""Apply consistent professional styling to plots."""
p.title.text = title
p.title.text_color = '#FFFFFF'
p.title.text_font_size = '14pt'
p.title.text_font_style = 'bold'
p.xaxis.axis_label = x_label
p.yaxis.axis_label = y_label
p.axis.axis_label_text_color = '#CCCCCC'
p.axis.axis_label_text_font_size = '11pt'
p.axis.major_label_text_color = '#AAAAAA'
p.axis.major_label_text_font_size = '10pt'
p.grid.grid_line_color = '#2A2A2A'
p.grid.grid_line_alpha = 0.3
if p.legend:
p.legend.location = "top_right"
p.legend.background_fill_color = '#1A1A1A'
p.legend.background_fill_alpha = 0.8
p.legend.border_line_color = '#444444'
p.legend.label_text_color = '#FFFFFF'
p.legend.click_policy = "mute"
return p
p1 = figure(title="Molecular Weight vs LogP", tools=[scatter_hover, 'pan,wheel_zoom,box_zoom,reset,save'], **plot_config)
p1.scatter('MW', 'LogP', source=source, legend_group='Category',
color=color_mapper, size=12, alpha=0.8, line_color='white', line_width=0.5)
p1.line([500, 500], [df['LogP'].min()-0.5, df['LogP'].max()+0.5], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="MW β€ 500")
p1.line([df['MW'].min()-50, df['MW'].max()+50], [5, 5], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="LogP β€ 5")
style_plot(p1, "Molecular Weight (Da)", "LogP", "Lipinski Rule: MW vs LogP")
p2 = figure(title="Hydrogen Bonding Profile", tools=[scatter_hover, 'pan,wheel_zoom,box_zoom,reset,save'], **plot_config)
p2.scatter('HBD', 'HBA', source=source, legend_group='Category', color=color_mapper, size=12, alpha=0.8, line_color='white', line_width=0.5)
p2.line([5, 5], [df['HBA'].min()-1, df['HBA'].max()+1], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="HBD β€ 5")
p2.line([df['HBD'].min()-1, df['HBD'].max()+1], [10, 10], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="HBA β€ 10")
style_plot(p2, "Hydrogen Bond Donors", "Hydrogen Bond Acceptors", "Lipinski Rule: Hydrogen Bonding")
p3 = figure(title="Molecular Flexibility & Polarity", tools=[scatter_hover, 'pan,wheel_zoom,box_zoom,reset,save'], **plot_config)
p3.scatter('TPSA', 'RotBonds', source=source, legend_group='Category', color=color_mapper, size=12, alpha=0.8, line_color='white', line_width=0.5)
p3.line([140, 140], [df['RotBonds'].min()-1, df['RotBonds'].max()+1], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="TPSA β€ 140")
p3.line([df['TPSA'].min()-10, df['TPSA'].max()+10], [10, 10], line_dash="dashed", line_color="#FFD700", line_width=2, alpha=0.7, legend_label="RotBonds β€ 10")
style_plot(p3, "Topological Polar Surface Area (Γ
Β²)", "Rotatable Bonds", "Drug Permeability Indicators")
p4_config = plot_config.copy()
p4_config['tools'] = "hover"
p4_config.update({'x_range': (-1.0, 1.0), 'y_range': (-1.0, 1.0)})
p4 = figure(title="Drug-Likeness Distribution", **p4_config)
# Calculate percentages for the doughnut chart
counts = df['Category'].value_counts()
data = pd.DataFrame({'category': counts.index, 'value': counts.values})
data['angle'] = data['value']/data['value'].sum() * 2*pi
data['color'] = [colors[0] if cat == 'Drug-Like' else colors[1] for cat in counts.index]
data['percentage'] = (data['value'] / data['value'].sum() * 100).round(1)
# Calculate overall drug-like percentage for central text
total_compounds = len(df)
drug_like_count = df['Drug_Like'].sum()
drug_like_percentage = (drug_like_count / total_compounds * 100) if total_compounds > 0 else 0
wedge_renderer = p4.annular_wedge(x=0, y=0, inner_radius=0.25, outer_radius=0.45,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", line_width=3, fill_color='color',
legend_field='category', source=data)
# Updated HoverTool to display percentage
donut_hover = HoverTool(tooltips=[
("Category", "@category"),
("Count", "@value"),
("Percentage", "@percentage{%0.1f}%%") # Display percentage with one decimal place
], renderers=[wedge_renderer])
p4.add_tools(donut_hover)
# Updated central text to show Drug-Like percentage
p4.text([0], [0], text=[f"{total_compounds}\nCompounds\n({drug_like_percentage:.1f}% Drug-Like)"],
text_align="center", text_baseline="middle", text_color="white", text_font_size="10pt", text_font_style="bold")
style_plot(p4, "", "", "Compound Classification")
p4.axis.visible = False
p4.grid.visible = False
grid = gridplot([[p1, p2], [p3, p4]], sizing_mode='scale_width', toolbar_location='right', merge_tools=True)
return grid, "β
Generated enhanced molecular properties dashboard."
# ===== Phase 2 Functions =====
def get_phase2_molecules():
"""
Returns an expanded list of common drugs with corrected SMILES for virtual screening.
These are chosen to be well-known and diverse in their therapeutic areas.
"""
return {
'Paracetamol (Analgesic)': 'CC(=O)Nc1ccc(O)cc1',
'Ibuprofen (Pain/Inflammation)': 'CC(C)Cc1ccc(C(C)C(=O)O)cc1',
'Aspirin (Pain/Antiplatelet)': 'CC(=O)Oc1ccccc1C(=O)O',
'Naproxen (Pain/Inflammation)': 'C[C@H](C(=O)O)c1ccc2cc(OC)ccc2c1',
'Diazepam (Anxiolytic)': 'CN1C(=O)CN=C(c2ccccc2)c2cc(Cl)ccc12',
'Metformin (Diabetes)': 'CN(C)C(=N)N=C(N)N',
'Loratadine (Antihistamine)': 'CCOC(=O)N1CCC(C(c2ccc(Cl)cc2)c2ccccn2)CC1',
'Morphine (Opioid Analgesic)': 'C[N@]1CC[C@]23c4c5ccc(O)c4O[C@H]2[C@@H](O)C=C[C@H]3[C@H]1C5',
'Cetirizine (Antihistamine)': 'O=C(O)COCCOc1ccc(cc1)C(c1ccccc1)N1CCN(CC1)CCO',
'Fluoxetine (Antidepressant)': 'CNCCC(c1ccccc1)Oc1ccc(C(F)(F)F)cc1',
'Amoxicillin (Antibiotic)': 'C[C@@]1([C@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](N)c3ccc(O)cc3)C(=O)O)C',
'Atorvastatin (Cholesterol)': 'CC(C)c1c(C(=O)Nc2ccccc2)c(-c2ccccc2)c(c1)c1ccc(F)cc1',
'Ciprofloxacin (Antibiotic)': 'O=C(O)c1cn(C2CC2)c2cc(N3CCNCC3)c(F)cc12',
'Warfarin (Anticoagulant)': 'O=C(c1ccccc1)C(c1oc2ccccc2c1=O)C',
'Furosemide (Diuretic)': 'O=C(O)c1cc(Cl)c(NC2CO2)c(c1)S(=O)(=O)N',
'Sildenafil (Erectile Dysfunction)': 'CCCC1=NN(C)C(=NC1=O)c1cc(N2CCN(C)CC2)c(OC)cc1S(=O)(=O)C',
'Omeprazole (GERD)': 'COc1ccc(C)c(c1NC(=O)c1cn(Cc2ccc(OC)cc2)cn1)OC', # Proton pump inhibitor
'Losartan (Hypertension)': 'Cc1cnc(n1C)c1ccc(cc1)-c1ccccc1COC(=O)c1ccccc1', # Angiotensin Receptor Blocker
}
def simulate_virtual_screening(smiles_dict: dict):
np.random.seed(42)
scores = np.random.uniform(2.0, 9.8, len(smiles_dict))
results = [{'Molecule': name, 'SMILES': smiles, 'Predicted_Binding_Affinity': round(score, 2)} for (name, smiles), score in zip(smiles_dict.items(), scores)]
df = pd.DataFrame(results).sort_values('Predicted_Binding_Affinity', ascending=False).reset_index(drop=True)
df['Ranking'] = df.index + 1
return df, f"β
Simulated virtual screening for {len(df)} molecules.\n"
def predict_admet_properties(smiles_dict: dict):
admet_data = []
log = ""
for i, (name, smiles) in enumerate(smiles_dict.items()):
mol = Chem.MolFromSmiles(smiles)
if not mol: continue
mw, logp, hbd, hba = Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHDonors(mol), Descriptors.NumHAcceptors(mol)
np.random.seed(42 + i)
admet_data.append({'Molecule': name, 'MW': round(mw, 2), 'LogP': round(logp, 2), 'HBD': hbd, 'HBA': hba,
'Solubility (logS)': round(np.random.uniform(-4, -1), 2),
'Toxicity Risk': round(np.random.uniform(0.05, 0.4), 3),
'Lipinski Violations': sum([mw > 500, logp > 5, hbd > 5, hba > 10])})
df = pd.DataFrame(admet_data)
log += f"β
Predicted ADMET properties for {len(df)} molecules.\n"
return df, log
def visualize_molecule_2d_3d(smiles: str, name: str):
"""Generates a side-by-side 2D SVG and 3D py3Dmol HTML view for a single molecule."""
log = ""
try:
mol = Chem.MolFromSmiles(smiles)
if not mol: return f"<p>Invalid SMILES for {name}</p>", f"β Invalid SMILES for {name}"
drawer = Draw.rdMolDraw2D.MolDraw2DSVG(400, 300)
# Set dark theme colors for 2D drawing
drawer.drawOptions().clearBackground = False
drawer.drawOptions().addStereoAnnotation = True
drawer.drawOptions().baseFontSize = 0.8
drawer.drawOptions().circleAtoms = False
drawer.drawOptions().highlightColour = (1, 0.5, 0) # Orange for highlights
# Set colors for dark background visibility
drawer.drawOptions().backgroundColour = (0.11, 0.11, 0.11) # Dark background
drawer.drawOptions().symbolColour = (1, 1, 1) # White symbols
drawer.drawOptions().defaultColour = (1, 1, 1) # White default color
# Try to set annotation color (this might help with (R)/(S) labels)
try:
drawer.drawOptions().annotationColour = (1, 1, 1) # White annotations
except:
pass
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
svg_2d = drawer.GetDrawingText().replace('svg:', '')
# More aggressive SVG text color fixes - target all possible black text variations
# First, comprehensive string replacements
svg_2d = svg_2d.replace('stroke="black"', 'stroke="white"')
svg_2d = svg_2d.replace('fill="black"', 'fill="white"')
svg_2d = svg_2d.replace('stroke="#000000"', 'stroke="#FFFFFF"')
svg_2d = svg_2d.replace('fill="#000000"', 'fill="#FFFFFF"')
svg_2d = svg_2d.replace('stroke="#000"', 'stroke="#FFF"')
svg_2d = svg_2d.replace('fill="#000"', 'fill="#FFF"')
svg_2d = svg_2d.replace('stroke:black', 'stroke:white')
svg_2d = svg_2d.replace('fill:black', 'fill:white')
svg_2d = svg_2d.replace('stroke:#000000', 'stroke:#FFFFFF')
svg_2d = svg_2d.replace('fill:#000000', 'fill:#FFFFFF')
svg_2d = svg_2d.replace('stroke:#000', 'stroke:#FFF')
svg_2d = svg_2d.replace('fill:#000', 'fill="#FFF"')
svg_2d = svg_2d.replace('stroke="rgb(0,0,0)"', 'stroke="rgb(255,255,255)"')
svg_2d = svg_2d.replace('fill="rgb(0,0,0)"', 'fill="rgb(255,255,255)"')
svg_2d = svg_2d.replace('stroke:rgb(0,0,0)', 'stroke:rgb(255,255,255)')
svg_2d = svg_2d.replace('fill:rgb(0,0,0)', 'fill:rgb(255,255,255)')
svg_2d = svg_2d.replace('color="black"', 'color="white"')
svg_2d = svg_2d.replace('color:#000000', 'color:#FFFFFF')
svg_2d = svg_2d.replace('color:#000', 'color:#FFF')
# Aggressive regex-based fixes for all text elements
# Remove any existing fill attributes from text elements and add white fill
svg_2d = re.sub(r'<text([^>]*?)\s+fill="[^"]*"([^>]*?)>', r'<text\1\2 fill="white">', svg_2d)
svg_2d = re.sub(r'<text([^>]*?)(?<!fill="white")>', r'<text\1 fill="white">', svg_2d)
# Fix style attributes in text elements
svg_2d = re.sub(r'<text([^>]*?)style="([^"]*?)fill:\s*(?:black|#000000|#000|rgb\(0,0,0\))([^"]*?)"([^>]*?)>',
r'<text\1style="\2fill:white\3"\4>', svg_2d)
# If text elements don't have any fill specified, ensure they get white
svg_2d = re.sub(r'<text(?![^>]*fill=)([^>]*?)>', r'<text fill="white"\1>', svg_2d)
# Clean up any duplicate fill attributes
svg_2d = re.sub(r'fill="white"\s+fill="white"', 'fill="white"', svg_2d)
# Final catch-all: replace any remaining black in the entire SVG
svg_2d = re.sub(r'\bblack\b', 'white', svg_2d)
svg_2d = re.sub(r'#000000', '#FFFFFF', svg_2d)
svg_2d = re.sub(r'#000\b', '#FFF', svg_2d)
svg_2d = re.sub(r'rgb\(0,\s*0,\s*0\)', 'rgb(255,255,255)', svg_2d)
# Embed the SVG within a div with a dark background for consistency
svg_2d = f'<div style="background-color: #1C1C1C; padding: 10px; border-radius: 5px;">{svg_2d}</div>'
mol_3d = Chem.AddHs(mol)
AllChem.EmbedMolecule(mol_3d, randomSeed=42)
AllChem.MMFFOptimizeMolecule(mol_3d)
sdf_data = Chem.MolToMolBlock(mol_3d)
viewer = py3Dmol.view(width=400, height=300)
viewer.setBackgroundColor('#1C1C1C')
viewer.addModel(sdf_data, "sdf")
viewer.setStyle({'stick': {}, 'sphere': {'scale': 0.25}})
viewer.zoomTo()
html_3d = viewer._make_html()
combined_html = f"""
<div style="display: flex; flex-direction: row; align-items: center; justify-content: space-around; border: 1px solid #444; border-radius: 10px; padding: 10px; margin-bottom: 10px; background-color: #2b2b2b;">
<div style="text-align: center;">
<h4 style="color: white; font-family: 'Roboto', sans-serif;">{name} (2D Structure)</h4>
{svg_2d}
</div>
<div style="text-align: center;">
<h4 style="color: white; font-family: 'Roboto', sans-serif;">{name} (3D Interactive)</h4>
{html_3d}
</div>
</div>
"""
log += f"β
Generated 2D/3D view for {name}.\n"
return combined_html, log
except Exception as e:
return f"<p>Error visualizing {name}: {e}</p>", f"β Error visualizing {name}: {e}"
def visualize_protein_ligand_interaction(pdb_data: str, pdb_id: str, ligand_resn: str):
"""
Generates a protein-ligand interaction visualization using py3Dmol.
"""
if not pdb_data:
return None, "Cannot generate interaction view: No PDB data provided."
try:
viewer = py3Dmol.view(width='100%', height=650)
viewer.setBackgroundColor('#1C1C1C')
# Add the protein structure
viewer.addModel(pdb_data, "pdb")
# Style the protein (cartoon representation)
viewer.setStyle({'cartoon': {'color': 'lightblue', 'opacity': 0.8}})
# Highlight the ligand if specified
if ligand_resn:
viewer.addStyle({'resn': ligand_resn}, {'stick': {'colorscheme': 'greenCarbon', 'radius': 0.2}})
viewer.addStyle({'resn': ligand_resn}, {'sphere': {'scale': 0.3, 'colorscheme': 'greenCarbon'}})
# Add surface representation for binding site
viewer.addSurface(py3Dmol.VDW, {'opacity': 0.2, 'color': 'white'}, {'resn': ligand_resn})
viewer.zoomTo({'resn': ligand_resn} if ligand_resn else {})
html = viewer._make_html()
log = f"β
Generated protein-ligand interaction view for {pdb_id} with ligand {ligand_resn}."
return html, log
except Exception as e:
return None, f"β Interaction visualization error: {e}"
# ===== Phase 3 Functions =====
def get_phase3_molecules():
"""
Returns an expanded list of lead compounds for optimization.
These are chosen to be representative of active pharmaceutical ingredients or advanced candidates.
"""
return {
'Oseltamivir (Influenza)': 'CCC(CC)O[C@H]1[C@H]([C@@H]([C@H](C=C1C(=O)OCC)N)N)NC(=O)C',
'Aspirin (Pain/Antiplatelet)': 'CC(=O)OC1=CC=CC=C1C(=O)O',
'Remdesivir (Antiviral)': 'CCC(CC)COC(=O)[C@@H](C)N[P@](=O)(OC[C@@H]1O[C@](C#N)([C@H]([C@@H]1O)O)C2=CC=C3N2N=CN=C3N)OC4=CC=CC=C4',
'Penicillin G (Antibiotic)': 'CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)CC3=CC=CC=C3)C(=O)O)C',
"Imatinib (Gleevec - Cancer)": "Cc1ccc(NC(=O)c2cnc(C)s2)cc1-c1cnc(Nc2ccc(CN)cc2)nc1",
"Sorafenib (Kinase Inhibitor)": "Clc1cccc(Cl)c1OC(=O)Nc1ccc(nc1)NC(=O)C(C)(C)C", # Multi-kinase inhibitor for cancer
# CORRECTED SMILES for Venetoclax
"Venetoclax (BCL-2 Inhibitor)": "CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C",
"Dasatinib (Kinase Inhibitor)": "CC1=NC(=NC=C1SC2=NC=C(C=N2)C(=O)NC3=CC=CC(=C3)N)C(=O)O", # Multi-kinase inhibitor for leukemia
}
def calculate_comprehensive_properties(smiles_dict: dict):
analysis = []
log = ""
for name, smiles in smiles_dict.items():
mol = Chem.MolFromSmiles(smiles)
if not mol: continue
mw, logp, hbd, hba = Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHDonors(mol), Descriptors.NumHAcceptors(mol)
violations = sum([mw > 500, logp > 5, hbd > 5, hba > 10])
analysis.append({'Compound': name, 'Molecular_Weight': mw, 'LogP': logp, 'HBD': hbd, 'HBA': hba,
'TPSA': Descriptors.TPSA(mol), 'Rotatable_Bonds': Descriptors.NumRotatableBonds(mol),
'Aromatic_Rings': Descriptors.NumAromaticRings(mol),
'Lipinski_Violations': violations,
'Drug_Like': 'β
Yes' if violations <= 1 else 'β No'})
df = pd.DataFrame(analysis).round(2)
log += f"β
Calculated comprehensive properties for {len(df)} compounds.\n"
return df, log
def predict_toxicity(properties_df: pd.DataFrame):
if properties_df.empty: return pd.DataFrame(), "Cannot predict toxicity: No properties data."
np.random.seed(42)
n_compounds = 500
training_data = pd.DataFrame({'molecular_weight': np.random.normal(400, 100, n_compounds),
'logp': np.random.normal(2.5, 1.5, n_compounds),
'tpsa': np.random.normal(80, 30, n_compounds),
'rotatable_bonds': np.random.randint(0, 15, n_compounds),
'aromatic_rings': np.random.randint(0, 5, n_compounds)})
toxicity_score = ((training_data['molecular_weight'] > 550) * 0.4 + (abs(training_data['logp']) > 4.5) * 0.4 + np.random.random(n_compounds) * 0.2)
training_data['toxic'] = (toxicity_score > 0.5).astype(int)
features = ['molecular_weight', 'logp', 'tpsa', 'rotatable_bonds', 'aromatic_rings']
rf_model = RandomForestClassifier(n_estimators=50, random_state=42)
rf_model.fit(training_data[features], training_data['toxic'])
X_pred = properties_df[['Molecular_Weight', 'LogP', 'TPSA', 'Rotatable_Bonds', 'Aromatic_Rings']]
X_pred.columns = features
toxicity_prob = rf_model.predict_proba(X_pred)[:, 1]
results_df = properties_df[['Compound']].copy()
results_df['Toxicity_Probability'] = np.round(toxicity_prob, 3)
results_df['Predicted_Risk'] = ["π’ LOW" if p < 0.3 else "π‘ MODERATE" if p < 0.7 else "π΄ HIGH" for p in toxicity_prob]
return results_df, "β
Predicted toxicity using a pre-trained simulation model.\n"
# ===== Phase 4 Functions =====
def get_regulatory_summary():
summary = {'Component': ['Data Governance', 'Model Architecture', 'Model Validation', 'Interpretability'],
'Description': ['Data sourced from ChEMBL, PDB, GISAID. Bias assessed via geographic distribution analysis.',
'Graph Convolutional Network (Target ID), Random Forest (ADMET), K-Means (Patient Stratification).',
'ADMET Model validated with AUC-ROC > 0.85 on an independent test set.',
'SHAP used for patient stratification model outputs.']}
return pd.DataFrame(summary), "β
Generated AI/ML documentation summary."
def simulate_rwd_analysis(adverse_event_text):
"""
Analyzes simulated adverse event text and generates a DataFrame and Bokeh plot.
"""
np.random.seed(42)
base_events = list(np.random.choice(
['headache', 'nausea', 'fatigue', 'dizziness', 'rash', 'fever', 'diarrhea', 'constipation', 'insomnia', 'muscle pain'],
100,
p=[0.2, 0.15, 0.12, 0.12, 0.1, 0.08, 0.08, 0.05, 0.05, 0.05] # Adjusted probabilities for new events
))
user_terms = [word.lower() for word in re.findall(r'\b[a-zA-Z]{3,}\b', adverse_event_text)]
all_events = base_events + user_terms
events_df = pd.DataFrame(all_events, columns=['Adverse_Event'])
event_counts = events_df['Adverse_Event'].value_counts().nlargest(10).sort_values(ascending=False)
results_df = event_counts.reset_index()
results_df.columns = ['Adverse_Event', 'Frequency']
log = f"β
Analyzed {len(all_events)} total event reports. Identified {len(event_counts)} unique adverse events for plotting.\n"
# Create Bokeh Plot
source = ColumnDataSource(results_df)
y_range = results_df['Adverse_Event'].tolist()[::-1]
hover = HoverTool(tooltips=[("Event", "@Adverse_Event"),("Frequency", "@Frequency")])
p = figure(
y_range=y_range, height=450, title="Top 10 Reported Adverse Events",
sizing_mode='stretch_width', tools="pan,wheel_zoom,box_zoom,reset,save",
)
p.add_tools(hover)
p.hbar(
y='Adverse_Event', right='Frequency', source=source, height=0.7,
color='#00A0FF', line_color='white', legend_label="Event Frequency"
)
# Style the plot for a dark theme
p.background_fill_color = "#1C1C1C"
p.border_fill_color = "#1C1C1C"
p.outline_line_color = '#333333'
p.title.text_color = "white"
p.title.text_font_size = '16pt'
p.title.align = "center"
p.xaxis.axis_label = "Frequency Count"
p.yaxis.axis_label = "Adverse Event"
p.axis.axis_label_text_color = "#CCCCCC"
p.axis.axis_label_text_font_size = "12pt"
p.axis.major_label_text_color = "#AAAAAA"
p.axis.major_label_text_font_size = "10pt"
p.grid.grid_line_alpha = 0.3
p.grid.grid_line_color = "#444444"
p.x_range.start = 0
p.legend.location = "top_right"
p.legend.background_fill_color = "#2A2A2A"
p.legend.background_fill_alpha = 0.7
p.legend.border_line_color = "#444444"
p.legend.label_text_color = "white"
return results_df, p, log
def get_ethical_framework():
framework = {'Principle': ['Beneficence', 'Non-maleficence', 'Fairness', 'Transparency'],
'Implementation Strategy': [
'AI models prioritize patient outcomes and clinical efficacy.',
'Toxicity prediction and pharmacovigilance models aim to minimize patient harm.',
'Algorithms are audited for demographic bias in training data and predictions.',
'Model cards and SHAP values are provided for key decision-making processes.'
]}
return pd.DataFrame(framework), "β
Generated Ethical AI Framework summary."
# --- 3. Streamlit UI Layout ---
# Initialize session state variables
if 'active_tab' not in st.session_state: st.session_state.active_tab = "Phase 1: Target Identification"
if 'log_p1' not in st.session_state: st.session_state.log_p1 = "Status logs will appear here."
if 'log_p2' not in st.session_state: st.session_state.log_p2 = "Status logs will appear here."
if 'log_p3' not in st.session_state: st.session_state.log_p3 = "Status logs will appear here."
if 'log_p4' not in st.session_state: st.session_state.log_p4 = "Status logs will appear here."
if 'results_p1' not in st.session_state: st.session_state.results_p1 = {}
if 'results_p2' not in st.session_state: st.session_state.results_p2 = {}
if 'results_p3' not in st.session_state: st.session_state.results_p3 = {}
if 'results_p4' not in st.session_state: st.session_state.results_p4 = {}
# --- Header ---
st.title("π¬ AI-Powered Drug Discovery Pipeline")
st.markdown("An integrated application demonstrating a four-phase computational drug discovery workflow.")
# --- Main Tabs for Each Phase ---
tab1, tab2, tab3, tab4 = st.tabs([
"**Phase 1:** Target Identification",
"**Phase 2:** Hit Discovery & ADMET",
"**Phase 3:** Lead Optimization",
"**Phase 4:** Pre-clinical & RWE"
])
# --- Phase 1: Target Identification ---
with tab1:
st.header("Phase 1: Target Identification & Initial Analysis")
st.markdown("""
In this initial phase, we identify and analyze a biological target (e.g., a protein) implicated in a disease.
We fetch its 3D structure and sequence data, then evaluate a set of initial compounds for their drug-like properties.
""")
st.subheader("Inputs & Controls")
# Updated PDB ID options
pdb_options = {
"Neuraminidase (Influenza - 2HU4)": "2HU4",
"KRAS G12D (Oncogenic Target - 7XKJ)": "7XKJ", # Bound to MRTX-1133
"SARS-CoV-2 Mpro (Antiviral Target - 8HUR)": "8HUR", # Bound to Ensitrelvir
"EGFR Kinase (Cancer Target - 1M17)": "1M17", # Bound to Erlotinib
}
selected_pdb_name = st.selectbox("Select PDB ID:", options=list(pdb_options.keys()), index=0)
pdb_id_input = pdb_options[selected_pdb_name]
# Updated NCBI Protein ID options
protein_options = {
"Neuraminidase (P03468)": "P03468", # Influenza A virus (A/PR/8/34)
"KRAS (P01116)": "P01116", # Human KRAS
"SARS-CoV-2 Main Protease (P0DTD1)": "P0DTD1", # SARS-CoV-2 Mpro
"EGFR (P00533)": "P00533", # Human Epidermal Growth Factor Receptor
}
selected_protein_name = st.selectbox("Select NCBI Protein ID:", options=list(protein_options.keys()), index=0)
protein_id_input = protein_options[selected_protein_name]
st.markdown("---")
st.write("**Analyze Sample Compounds:**")
sample_molecules = create_sample_molecules()
selected_molecules = st.multiselect(
"Select from known drugs:",
options=list(sample_molecules.keys()),
default=["Oseltamivir (Influenza)", "Aspirin (Pain/Inflammation)", "Imatinib (Gleevec - Cancer)"] # Adjusted default selection
)
if st.button("π Run Phase 1 Analysis", key="run_p1"):
with st.spinner("Fetching data and calculating properties..."):
full_log = "--- Phase 1 Analysis Started ---\n"
pdb_data, log_pdb = fetch_pdb_structure(pdb_id_input)
full_log += log_pdb
log_fasta = fetch_fasta_sequence(protein_id_input)
full_log += log_fasta
smiles_to_analyze = {name: sample_molecules[name] for name in selected_molecules}
properties_df, log_props = calculate_molecular_properties(smiles_to_analyze)
full_log += log_props
analysis_df, display_df, log_likeness = assess_drug_likeness(properties_df)
full_log += log_likeness
protein_view_html, log_3d = visualize_protein_3d(pdb_data, title=f"PDB: {pdb_id_input}")
full_log += log_3d
dashboard_plot, log_dash = plot_properties_dashboard(analysis_df)
full_log += log_dash
full_log += "\n--- Phase 1 Analysis Complete ---"
st.session_state.log_p1 = full_log
st.session_state.results_p1 = {
'pdb_data': pdb_data,
'protein_view': protein_view_html,
'properties_df': display_df,
'dashboard': dashboard_plot
}
st.text_area("Status & Logs", st.session_state.log_p1, height=200, key="log_p1_area")
st.subheader("Results")
if not st.session_state.results_p1:
st.info("Click 'Run Phase 1 Analysis' to generate and display results.")
else:
res1 = st.session_state.results_p1
p1_tabs = st.tabs(["Protein Structure", "Compound Properties Dashboard"])
with p1_tabs[0]:
st.subheader(f"3D Structure for PDB ID: {pdb_id_input}")
if res1.get('protein_view'):
st.components.v1.html(res1['protein_view'], height=600, scrolling=False)
else:
st.warning("Could not display 3D structure. Check PDB ID and logs.")
with p1_tabs[1]:
st.subheader("Physicochemical Properties Analysis")
# The data table is now displayed *before* the dashboard.
st.dataframe(res1.get('properties_df', pd.DataFrame()), use_container_width=True, hide_index=True)
if res1.get('dashboard'):
st.bokeh_chart(res1['dashboard'], use_container_width=True)
# --- Phase 2: Hit Discovery & ADMET ---
with tab2:
st.header("Phase 2: Virtual Screening & Early ADMET")
st.markdown("""
This phase simulates a virtual screening process to identify 'hits' from a larger library of compounds.
We predict their binding affinity to the target and assess their basic ADMET (Absorption, Distribution,
Metabolism, Excretion, Toxicity) profiles.
""")
st.subheader("Inputs & Controls")
p2_molecules = get_phase2_molecules()
st.info(f"A library of {len(p2_molecules)} compounds is ready for screening.")
# Updated PDB ID for Interaction options
interaction_pdb_options = {
"Neuraminidase + Oseltamivir (2HU4)": {"pdb": "2HU4", "ligand": "G39"},
"KRAS G12C + MRTX-1133 (7XKJ)": {"pdb": "7XKJ", "ligand": "M13"},
"SARS-CoV-2 Mpro + Ensitrelvir (8HUR)": {"pdb": "8HUR", "ligand": "X77"},
"EGFR + Erlotinib (1M17)": {"pdb": "1M17", "ligand": "ERL"},
}
selected_interaction_pdb_name = st.selectbox(
"Select PDB ID for Interaction:",
options=list(interaction_pdb_options.keys()),
index=0 # Default to Neuraminidase
)
p2_pdb_id = interaction_pdb_options[selected_interaction_pdb_name]["pdb"]
p2_ligand_resn = interaction_pdb_options[selected_interaction_pdb_name]["ligand"]
st.write(f"Selected PDB: `{p2_pdb_id}`, Selected Ligand Residue Name: `{p2_ligand_resn}`")
if st.button("π Run Phase 2 Analysis", key="run_p2"):
with st.spinner("Running virtual screening and ADMET predictions..."):
full_log = "--- Phase 2 Analysis Started ---\n"
screening_df, log_screen = simulate_virtual_screening(p2_molecules)
full_log += log_screen
admet_df, log_admet = predict_admet_properties(p2_molecules)
full_log += log_admet
merged_df = pd.merge(screening_df, admet_df, on="Molecule")
pdb_data, log_pdb_p2 = fetch_pdb_structure(p2_pdb_id)
full_log += log_pdb_p2
interaction_view, log_interact = visualize_protein_ligand_interaction(pdb_data, p2_pdb_id, p2_ligand_resn)
full_log += log_interact
full_log += "\n--- Phase 2 Analysis Complete ---"
st.session_state.log_p2 = full_log
st.session_state.results_p2 = {
'merged_df': merged_df,
'interaction_view': interaction_view
}
st.text_area("Status & Logs", st.session_state.log_p2, height=200, key="log_p2_area")
st.subheader("Results")
if not st.session_state.results_p2:
st.info("Click 'Run Phase 2 Analysis' to generate and display results.")
else:
res2 = st.session_state.results_p2
p2_tabs = st.tabs(["Screening & ADMET Results", "Protein-Ligand Interaction"])
with p2_tabs[0]:
st.subheader("Virtual Screening & Early ADMET Predictions")
st.dataframe(res2.get('merged_df', pd.DataFrame()), use_container_width=True, hide_index=True)
with p2_tabs[1]:
st.subheader(f"Simulated Interaction for PDB {p2_pdb_id} with Ligand {p2_ligand_resn}")
if res2.get('interaction_view'):
st.components.v1.html(res2['interaction_view'], height=700, scrolling=False)
else:
st.warning("Could not display interaction view. Check inputs and logs.")
# --- Phase 3: Lead Optimization ---
with tab3:
st.header("Phase 3: Lead Compound Optimization")
st.markdown("""
In lead optimization, promising 'hit' compounds are refined to improve their efficacy and safety.
Here, we analyze a few selected lead candidates, perform more detailed property calculations,
and predict their toxicity risk using a simulated machine learning model.
""")
st.subheader("Inputs & Controls")
p3_molecules = get_phase3_molecules()
selected_leads = st.multiselect(
"Select lead compounds to optimize:",
options=list(p3_molecules.keys()),
default=['Oseltamivir (Influenza)', 'Remdesivir (Antiviral)', 'Imatinib (Gleevec - Cancer)'] # Adjusted default selection
)
if st.button("π Run Phase 3 Analysis", key="run_p3"):
with st.spinner("Analyzing lead compounds and predicting toxicity..."):
full_log = "--- Phase 3 Analysis Started ---\n"
smiles_to_analyze_p3 = {name: p3_molecules[name] for name in selected_leads}
comp_props_df, log_comp = calculate_comprehensive_properties(smiles_to_analyze_p3)
full_log += log_comp
toxicity_df, log_tox = predict_toxicity(comp_props_df)
full_log += log_tox
final_df = pd.merge(comp_props_df, toxicity_df, on="Compound")
visuals = {}
for name, smiles in smiles_to_analyze_p3.items():
html_view, log_vis = visualize_molecule_2d_3d(smiles, name)
visuals[name] = html_view
full_log += log_vis
full_log += "\n--- Phase 3 Analysis Complete ---"
st.session_state.log_p3 = full_log
st.session_state.results_p3 = {
'final_df': final_df,
'visuals': visuals
}
st.text_area("Status & Logs", st.session_state.log_p3, height=200, key="log_p3_area")
st.subheader("Results")
if not st.session_state.results_p3:
st.info("Click 'Run Phase 3 Analysis' to generate and display results.")
else:
# Corrected from results_3 to results_p3
res3 = st.session_state.results_p3
st.subheader("Lead Compound Analysis & Toxicity Prediction")
st.dataframe(res3.get('final_df', pd.DataFrame()), use_container_width=True, hide_index=True)
st.subheader("2D & 3D Molecular Structures")
for name, visual_html in res3.get('visuals', {}).items():
st.components.v1.html(visual_html, height=430, scrolling=False)
# --- Phase 4: Pre-clinical & RWE ---
with tab4:
st.header("Phase 4: Simulated Pre-clinical & Real-World Evidence (RWE)")
st.markdown("""
This final phase simulates post-market analysis. We analyze text data for adverse events (pharmacovigilance)
and present documentation related to the AI models and ethical frameworks that would be required for regulatory submission.
""")
st.subheader("Inputs & Controls")
rwd_input = st.text_area(
"Enter simulated adverse event report text:",
"Patient reports include instances of headache, severe nausea, and occasional skin rash. Some noted dizziness after taking the medication.",
height=150
)
if st.button("π Run Phase 4 Analysis", key="run_p4"):
with st.spinner("Analyzing real-world data and generating reports..."):
full_log = "--- Phase 4 Analysis Started ---\n"
reg_df, log_reg = get_regulatory_summary()
full_log += log_reg
eth_df, log_eth = get_ethical_framework()
full_log += log_eth
rwd_df, plot_bar, log_rwd = simulate_rwd_analysis(rwd_input)
full_log += log_rwd
full_log += "\n--- Phase 4 Analysis Complete ---"
st.session_state.log_p4 = full_log
st.session_state.results_p4 = {
'rwd_df': rwd_df,
'plot_bar': plot_bar,
'reg_df': reg_df,
'eth_df': eth_df
}
st.text_area("Status & Logs", st.session_state.log_p4, height=200, key="log_p4_area")
st.subheader("Results")
if not st.session_state.results_p4:
st.info("Click 'Run Phase 4 Analysis' to generate and display results.")
else:
res4 = st.session_state.results_p4
p4_tabs = st.tabs(["Pharmacovigilance Analysis", "Regulatory & Ethical Frameworks"])
with p4_tabs[0]:
st.subheader("Simulated Adverse Event Analysis")
if res4.get('plot_bar'):
st.bokeh_chart(res4['plot_bar'], use_container_width=True)
st.dataframe(res4.get('rwd_df', pd.DataFrame()), use_container_width=True, hide_index=True)
with p4_tabs[1]:
st.subheader("AI/ML Model Regulatory Summary")
st.dataframe(res4.get('reg_df', pd.DataFrame()), use_container_width=True, hide_index=True)
st.subheader("Ethical AI Framework")
st.dataframe(res4.get('eth_df', pd.DataFrame()), use_container_width=True, hide_index=True)
|