alidenewade commited on
Commit
106857f
·
verified ·
1 Parent(s): 7d8f01d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -26
README.md CHANGED
@@ -1,14 +1,14 @@
1
- ---
2
- title: Drug Discovery App
3
- emoji: 👀
4
- colorFrom: pink
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.33.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
  # Comprehensive Drug Discovery Workflow
13
 
14
  **[Live Application on Hugging Face Spaces](https://huggingface.co/spaces/alidenewade/drug-discovery-app)**
@@ -42,7 +42,7 @@ The workflow is divided into three main steps:
42
  * **Automated Model Training**: Train a suite of standard and advanced regression models to predict `pIC50` values. The models include:
43
  * Linear Regression, Ridge, and Lasso
44
  * Random Forest and Gradient Boosting Regressors
45
- * [cite_start]Optional powerful models like XGBoost, LightGBM, and CatBoost
46
  * **Model Comparison**: Evaluate and rank the models based on performance metrics such as R-squared (`R²`), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
47
  * **In-depth Analysis**: For any selected model, you can visualize:
48
  * **Validation Plots**: Including actual vs. predicted values and residual plots to diagnose model fit.
@@ -76,29 +76,29 @@ Follow these steps to perform a full drug discovery cycle:
76
  ## 🔧 Technical Setup
77
 
78
  ### Backend & Framework
79
- * [cite_start]**Application Framework**: The user interface is built with **Gradio**.
80
- * [cite_start]**Core Libraries**: The application relies heavily on `pandas` for data manipulation, `scikit-learn` for machine learning, and `RDKit` for cheminformatics.
81
  * **Cheminformatics Tools**:
82
- * [cite_start]`chembl_webresource_client` is used to interface with the ChEMBL database.
83
- * [cite_start]`padelpy` provides a Python wrapper for the **PaDEL-Descriptor** software to calculate molecular fingerprints.
84
 
85
  ### System & Python Dependencies
86
 
87
  To run this application locally, you will need the following:
88
 
89
  * **System-level packages** as defined in `drugDisc_packages.txt`:
90
- * [cite_start]`default-jre` / `openjdk-17-jdk` (Java is required for PaDEL-Descriptor)
91
- * [cite_start]`wget` and `unzip`
92
 
93
  * **Python packages** as defined in `drugDisc_requirements.txt`:
94
- * [cite_start]`gradio`
95
- * [cite_start]`pandas`, `numpy`, `scipy`
96
- * [cite_start]`matplotlib`, `seaborn`
97
- * [cite_start]`scikit-learn`
98
- * [cite_start]`rdkit`
99
- * [cite_start]`chembl_webresource_client`
100
- * [cite_start]`padelpy`
101
- * [cite_start]`xgboost`, `lightgbm`, `catboost`
102
 
103
  ---
104
 
 
1
+ ---
2
+ title: Drug Discovery App
3
+ emoji: 👀
4
+ colorFrom: pink
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 5.33.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
  # Comprehensive Drug Discovery Workflow
13
 
14
  **[Live Application on Hugging Face Spaces](https://huggingface.co/spaces/alidenewade/drug-discovery-app)**
 
42
  * **Automated Model Training**: Train a suite of standard and advanced regression models to predict `pIC50` values. The models include:
43
  * Linear Regression, Ridge, and Lasso
44
  * Random Forest and Gradient Boosting Regressors
45
+ * Optional powerful models like XGBoost, LightGBM, and CatBoost
46
  * **Model Comparison**: Evaluate and rank the models based on performance metrics such as R-squared (`R²`), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
47
  * **In-depth Analysis**: For any selected model, you can visualize:
48
  * **Validation Plots**: Including actual vs. predicted values and residual plots to diagnose model fit.
 
76
  ## 🔧 Technical Setup
77
 
78
  ### Backend & Framework
79
+ * **Application Framework**: The user interface is built with **Gradio**.
80
+ * **Core Libraries**: The application relies heavily on `pandas` for data manipulation, `scikit-learn` for machine learning, and `RDKit` for cheminformatics.
81
  * **Cheminformatics Tools**:
82
+ * `chembl_webresource_client` is used to interface with the ChEMBL database.
83
+ * `padelpy` provides a Python wrapper for the **PaDEL-Descriptor** software to calculate molecular fingerprints.
84
 
85
  ### System & Python Dependencies
86
 
87
  To run this application locally, you will need the following:
88
 
89
  * **System-level packages** as defined in `drugDisc_packages.txt`:
90
+ * `default-jre` / `openjdk-17-jdk` (Java is required for PaDEL-Descriptor)
91
+ * `wget` and `unzip`
92
 
93
  * **Python packages** as defined in `drugDisc_requirements.txt`:
94
+ * `gradio`
95
+ * `pandas`, `numpy`, `scipy`
96
+ * `matplotlib`, `seaborn`
97
+ * `scikit-learn`
98
+ * `rdkit`
99
+ * `chembl_webresource_client`
100
+ * `padelpy`
101
+ * `xgboost`, `lightgbm`, `catboost`
102
 
103
  ---
104