Spaces:
Sleeping
Sleeping
File size: 35,948 Bytes
561a150 2b0d7ac 561a150 2b0d7ac c3673c6 2b0d7ac 50610ee c3673c6 561a150 2b0d7ac 561a150 2b0d7ac 561a150 2b0d7ac 561a150 2b0d7ac 561a150 2b0d7ac 561a150 2b0d7ac 561a150 2b0d7ac 561a150 c3673c6 89eae1b c7ddfd7 89eae1b c7ddfd7 c3673c6 89eae1b c3673c6 89eae1b c3673c6 89eae1b 0732634 89eae1b 0732634 561a150 0732634 2b0d7ac 561a150 2b0d7ac c3673c6 2b0d7ac 561a150 89eae1b c3673c6 b6dbfa3 c3673c6 b6dbfa3 c3673c6 b6dbfa3 c3673c6 b6dbfa3 c3673c6 b6dbfa3 0732634 c3673c6 b6dbfa3 c3673c6 b6dbfa3 561a150 c3673c6 50610ee c3673c6 b6dbfa3 c3673c6 b6dbfa3 c3673c6 561a150 0732634 561a150 2b0d7ac 0732634 c3673c6 2b0d7ac c3673c6 2b0d7ac 89eae1b c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac 1a677a2 2b0d7ac c3673c6 2b0d7ac 561a150 0732634 561a150 2b0d7ac 1a677a2 2b0d7ac c3673c6 2b0d7ac c3673c6 2b0d7ac 561a150 2b0d7ac c3673c6 2b0d7ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# --- IMPORTS ---
# Core and Data Handling
import gradio as gr
import pandas as pd
import numpy as np
import os
import glob
import time
import warnings
# Chemistry and Cheminformatics
from rdkit import Chem
from rdkit.Chem import Descriptors, Lipinski
from chembl_webresource_client.new_client import new_client
from padelpy import padeldescriptor
# Removed: import mols2grid
from rdkit.Chem.Draw import rdMolDraw2D
from rdkit.Chem import Draw
import base64
from io import BytesIO
# Plotting and Visualization
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import mannwhitneyu
# Machine Learning Models and Metrics
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import VarianceThreshold
from sklearn.linear_model import (
LinearRegression, Ridge, Lasso, ElasticNet, BayesianRidge,
HuberRegressor, PassiveAggressiveRegressor, OrthogonalMatchingPursuit,
LassoLars
)
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import (
RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor,
AdaBoostRegressor
)
from sklearn.neighbors import KNeighborsRegressor
from sklearn.dummy import DummyRegressor
from sklearn.metrics import (
mean_absolute_error, mean_squared_error, r2_score
)
# A placeholder class to store all results from a modeling run
class ModelRunResult:
def __init__(self, dataframe, plotter, models, selected_features):
self.dataframe = dataframe
self.plotter = plotter
self.models = models
self.selected_features = selected_features
# Optional Advanced Models
try:
import xgboost as xgb
import lightgbm as lgb
import catboost as cb
_has_extra_libs = True
except ImportError:
_has_extra_libs = False
warnings.warn("Optional libraries (xgboost, lightgbm, catboost) not found. Some models will be unavailable.")
# --- GLOBAL CONFIGURATION & SETUP ---
warnings.filterwarnings("ignore")
sns.set_theme(style='whitegrid')
# --- FINGERPRINT CONFIGURATION ---
# Create a dummy PubChem.xml if no XML files are found, to ensure fp_config is populated
# Updated path for XML files to 'padel_descriptors/*.xml'
padel_descriptors_dir = 'padel_descriptors'
if not os.path.exists(padel_descriptors_dir):
os.makedirs(padel_descriptors_dir)
# Check for XML files within the 'padel_descriptors' folder
xml_files = sorted(glob.glob(os.path.join(padel_descriptors_dir, '*.xml')))
if not xml_files:
try:
# Create a dummy PubChem.xml inside 'padel_descriptors' if no XML files are found
with open(os.path.join(padel_descriptors_dir, 'PubChem.xml'), 'w') as f:
f.write('')
xml_files = sorted(glob.glob(os.path.join(padel_descriptors_dir, '*.xml'))) # Re-scan after creating dummy
except IOError:
warnings.warn("Could not create a dummy 'PubChem.xml' file in 'padel_descriptors'. Fingerprint calculation might fail if no .xml files are present.")
if not xml_files:
warnings.warn(
"No descriptor .xml files found in 'padel_descriptors' directory. "
"Fingerprint calculation will not be possible. "
"Please place descriptor XML files in the 'padel_descriptors' directory."
)
fp_config = {os.path.splitext(os.path.basename(file))[0]: file for file in xml_files}
FP_list = sorted(list(fp_config.keys()))
# ==============================================================================
# === STEP 1: CORE DATA COLLECTION & EDA FUNCTIONS ===
# ==============================================================================
def get_target_chembl_id(query):
try:
target = new_client.target
res = target.search(query)
if not res:
return pd.DataFrame(), gr.Dropdown(choices=[], value=None), "No targets found for your query."
df = pd.DataFrame(res)
return df[["target_chembl_id", "pref_name", "organism"]], gr.Dropdown(choices=df["target_chembl_id"].tolist()), f"Found {len(df)} targets."
except Exception as e:
raise gr.Error(f"ChEMBL search failed: {e}")
def get_bioactivity_data(target_id):
try:
activity = new_client.activity
res = activity.filter(target_chembl_id=target_id).filter(standard_type="IC50")
if not res:
return pd.DataFrame(), "No IC50 bioactivity data found for this target."
df = pd.DataFrame(res)
return df, f"Fetched {len(df)} data points."
except Exception as e:
raise gr.Error(f"Failed to fetch bioactivity data: {e}")
def pIC50_calc(input_df):
df_copy = input_df.copy()
df_copy['standard_value'] = pd.to_numeric(df_copy['standard_value'], errors='coerce')
df_copy.dropna(subset=['standard_value'], inplace=True)
df_copy['standard_value_norm'] = df_copy['standard_value'].apply(lambda x: min(x, 100000000))
pIC50_values = []
for i in df_copy['standard_value_norm']:
if pd.notna(i) and i > 0:
molar = i * (10**-9)
pIC50_values.append(-np.log10(molar))
else:
pIC50_values.append(np.nan)
df_copy['pIC50'] = pIC50_values
df_copy['bioactivity_class'] = df_copy['standard_value_norm'].apply(
lambda x: "inactive" if pd.notna(x) and x >= 10000 else ("active" if pd.notna(x) and x <= 1000 else "intermediate")
)
return df_copy.drop(columns=['standard_value', 'standard_value_norm'])
def lipinski_descriptors(smiles_series):
moldata, valid_smiles = [], []
for elem in smiles_series:
if elem and isinstance(elem, str):
mol = Chem.MolFromSmiles(elem)
if mol:
moldata.append(mol)
valid_smiles.append(elem)
descriptor_rows = []
for mol in moldata:
row = [Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Lipinski.NumHDonors(mol), Lipinski.NumHAcceptors(mol)]
descriptor_rows.append(row)
columnNames = ["MW", "LogP", "NumHDonors", "NumHAcceptors"]
if not descriptor_rows: return pd.DataFrame(columns=columnNames), []
return pd.DataFrame(data=np.array(descriptor_rows), columns=columnNames), valid_smiles
def clean_and_process_data(df):
if df is None or df.empty: raise gr.Error("No data to process. Please fetch data first.")
if "canonical_smiles" not in df.columns or df["canonical_smiles"].isnull().all():
try:
df["canonical_smiles"] = [c.get("molecule_structures", {}).get("canonical_smiles") for c in new_client.molecule.get(list(df["molecule_chembl_id"]))]
except Exception as e:
raise gr.Error(f"Could not fetch SMILES from ChEMBL: {e}")
df = df[df.standard_value.notna()]
df = df[df.canonical_smiles.notna()]
# DEBUG FIX: Added drop_duplicates to align with notebook logic and ensure unique SMILES for merging.
df.drop_duplicates(['canonical_smiles'], inplace=True)
df["standard_value"] = pd.to_numeric(df["standard_value"], errors='coerce')
df.dropna(subset=['standard_value'], inplace=True)
df_processed = pIC50_calc(df)
df_processed = df_processed[df_processed.pIC50.notna()]
if df_processed.empty: return pd.DataFrame(), "No compounds remaining after pIC50 calculation."
df_lipinski, valid_smiles = lipinski_descriptors(df_processed['canonical_smiles'])
if not valid_smiles: return pd.DataFrame(), "No valid SMILES could be processed for Lipinski descriptors."
df_processed = df_processed[df_processed['canonical_smiles'].isin(valid_smiles)].reset_index(drop=True)
df_lipinski = df_lipinski.reset_index(drop=True)
df_final = pd.concat([df_processed, df_lipinski], axis=1)
return df_final, f"Processing complete. {len(df_final)} compounds remain after cleaning."
def run_eda_analysis(df, selected_classes):
if df is None or df.empty: raise gr.Error("No data available for analysis.")
df_filtered = df[df.bioactivity_class.isin(selected_classes)].copy()
if df_filtered.empty: return (None, None, None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), "No data for selected classes.")
plots = [create_frequency_plot(df_filtered), create_scatter_plot(df_filtered)]
stats_dfs = []
for desc in ['pIC50', 'MW', 'LogP', 'NumHDonors', 'NumHAcceptors']:
plots.append(create_boxplot(df_filtered, desc))
stats_dfs.append(mannwhitney_test(df_filtered, desc))
plt.close('all')
return (plots[0], plots[1], plots[2], stats_dfs[0], plots[3], stats_dfs[1], plots[4], stats_dfs[2], plots[5], stats_dfs[3], plots[6], stats_dfs[4], f"EDA complete for {len(df_filtered)} compounds.")
def create_frequency_plot(df):
plt.figure(figsize=(5.5, 5.5)); sns.barplot(x=df['bioactivity_class'].value_counts().index, y=df['bioactivity_class'].value_counts().values, palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}); plt.xlabel('Bioactivity Class', fontsize=12); plt.ylabel('Frequency', fontsize=12); plt.title('Frequency of Bioactivity Classes', fontsize=14); return plt.gcf()
def create_scatter_plot(df):
plt.figure(figsize=(5.5, 5.5)); sns.scatterplot(data=df, x='MW', y='LogP', hue='bioactivity_class', size='pIC50', palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}, sizes=(20, 200), alpha=0.7); plt.xlabel('Molecular Weight (MW)', fontsize=12); plt.ylabel('LogP', fontsize=12); plt.title('Chemical Space: MW vs. LogP', fontsize=14); plt.legend(title='Bioactivity Class'); return plt.gcf()
def create_boxplot(df, descriptor):
plt.figure(figsize=(5.5, 5.5)); sns.boxplot(x='bioactivity_class', y=descriptor, data=df, palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}); plt.xlabel('Bioactivity Class', fontsize=12); plt.ylabel(descriptor, fontsize=12); plt.title(f'{descriptor} by Bioactivity Class', fontsize=14); return plt.gcf()
def mannwhitney_test(df, descriptor):
results = []
for c1, c2 in [('active', 'inactive'), ('active', 'intermediate'), ('inactive', 'intermediate')]:
if c1 in df['bioactivity_class'].unique() and c2 in df['bioactivity_class'].unique():
d1, d2 = df[df.bioactivity_class == c1][descriptor].dropna(), df[df.bioactivity_class == c2][descriptor].dropna()
if not d1.empty and not d2.empty:
stat, p = mannwhitneyu(d1, d2)
results.append({'Comparison': f'{c1.title()} vs {c2.title()}', 'Statistics': stat, 'p-value': p, 'Interpretation': 'Different distribution (p < 0.05)' if p <= 0.05 else 'Same distribution (p > 0.05)'})
return pd.DataFrame(results)
# ==============================================================================
# === STEP 2: FEATURE ENGINEERING FUNCTIONS ===
# ==============================================================================
# Replacement for mols2grid.display in Step 2
def create_molecule_grid_html(df, smiles_col='canonical_smiles', max_mols=20):
html_parts = ['<div style="display: flex; flex-wrap: wrap; gap: 10px;">']
for idx, row in df.head(max_mols).iterrows():
smiles = row[smiles_col]
pic50 = row['pIC50']
mol = Chem.MolFromSmiles(smiles)
if mol:
# Generate molecule image
img = Draw.MolToImage(mol, size=(200, 200))
# Convert to base64
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Create HTML for this molecule
mol_html = f'''
<div style="border: 1px solid #ccc; padding: 10px; border-radius: 5px; text-align: center;">
<img src="data:image/png;base64,{img_str}" alt="Molecule" style="max-width: 200px;">
<p><strong>pIC50:</strong> {pic50:.2f}</p>
<p style="font-size: 10px; word-break: break-all;">{smiles}</p>
</div>
'''
html_parts.append(mol_html)
html_parts.append('</div>')
return ''.join(html_parts)
def calculate_fingerprints(current_state, fingerprint_type, progress=gr.Progress()):
input_df = current_state.get('cleaned_data')
if input_df is None or input_df.empty: raise gr.Error("No cleaned data found. Please complete Step 1.")
if not fingerprint_type: raise gr.Error("Please select a fingerprint type.")
progress(0, desc="Starting..."); yield f"π§ͺ Starting fingerprint calculation...", None, gr.update(visible=False), None, current_state
try:
smi_file, output_csv = 'molecule.smi', 'fingerprints.csv'
# DEBUG FIX: Switched to a safe merge instead of risky concat.
# Use canonical_smiles as the unique ID for PaDEL, since it was deduplicated in Step 1.
input_df[['canonical_smiles', 'canonical_smiles']].to_csv(smi_file, sep='\t', index=False, header=False)
if os.path.exists(output_csv): os.remove(output_csv)
descriptortypes = fp_config.get(fingerprint_type)
if not descriptortypes: raise gr.Error(f"Descriptor XML for '{fingerprint_type}' not found.")
progress(0.3, desc="βοΈ Running PaDEL..."); yield f"βοΈ Running PaDEL...", None, gr.update(visible=False), None, current_state
padeldescriptor(mol_dir=smi_file, d_file=output_csv, descriptortypes=descriptortypes, detectaromaticity=True, standardizenitro=True, standardizetautomers=True, threads=-1, removesalt=True, log=False, fingerprints=True)
if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0:
raise gr.Error("PaDEL failed to produce an output file. Check molecule validity.")
progress(0.7, desc="π Processing results..."); yield "π Processing results...", None, gr.update(visible=False), None, current_state
df_X = pd.read_csv(output_csv).rename(columns={'Name': 'canonical_smiles'})
# Safely merge fingerprints with original data. 'inner' ensures that only molecules
# for which fingerprints were successfully calculated are included.
final_df = pd.merge(input_df[['canonical_smiles', 'pIC50']], df_X, on='canonical_smiles', how='inner')
current_state['fingerprint_data'] = final_df; current_state['fingerprint_type'] = fingerprint_type
progress(0.9, desc="πΌοΈ Generating molecule grid...")
# Replacement for mols2grid.display in Step 2
mols_html = create_molecule_grid_html(final_df)
success_msg = f"β
Success! Generated {len(df_X.columns) -1} descriptors for {len(final_df)} molecules."
progress(1, desc="Completed!"); yield success_msg, final_df, gr.update(visible=True), gr.update(value=mols_html, visible=True), current_state
except Exception as e: raise gr.Error(f"Calculation failed: {e}")
finally:
if os.path.exists('molecule.smi'): os.remove('molecule.smi')
if os.path.exists('fingerprints.csv'): os.remove('fingerprints.csv')
# ==============================================================================
# === STEP 3: MODEL TRAINING & PREDICTION FUNCTIONS ===
# ==============================================================================
class ModelPlotter:
def __init__(self, models: dict, X_test: pd.DataFrame, y_test: pd.Series):
self._models, self._X_test, self._y_test = models, X_test, y_test
def plot_validation(self, model_name: str):
if model_name not in self._models: raise ValueError(f"Model '{model_name}' not found.")
model, y_pred = self._models[model_name], self._models[model_name].predict(self._X_test)
residuals = self._y_test - y_pred
fig, axes = plt.subplots(2, 2, figsize=(12, 10)); fig.suptitle(f'Model Validation Plots for {model_name}', fontsize=16, y=1.02)
sns.scatterplot(x=self._y_test, y=y_pred, ax=axes[0, 0], alpha=0.6); axes[0, 0].set_title('Actual vs. Predicted'); axes[0, 0].set_xlabel('Actual pIC50'); axes[0, 0].set_ylabel('Predicted pIC50'); lims = [min(self._y_test.min(), y_pred.min()), max(self._y_test.max(), y_pred.max())]; axes[0, 0].plot(lims, lims, 'r--', alpha=0.75, zorder=0)
sns.scatterplot(x=y_pred, y=residuals, ax=axes[0, 1], alpha=0.6); axes[0, 1].axhline(y=0, color='r', linestyle='--'); axes[0, 1].set_title('Residuals vs. Predicted'); axes[0, 1].set_xlabel('Predicted pIC50'); axes[0, 1].set_ylabel('Residuals')
sns.histplot(residuals, kde=True, ax=axes[1, 0]); axes[1, 0].set_title('Distribution of Residuals')
stats.probplot(residuals, dist="norm", plot=axes[1, 1]); axes[1, 1].set_title('Normal Q-Q Plot')
plt.tight_layout(); return fig
def plot_feature_importance(self, model_name: str, top_n: int = 7):
if model_name not in self._models: raise ValueError(f"Model '{model_name}' not found.")
model = self._models[model_name]
if hasattr(model, 'feature_importances_'): importances = model.feature_importances_
elif hasattr(model, 'coef_'): importances = np.abs(model.coef_)
else: return None
top_features = pd.DataFrame({'Feature': self._X_test.columns, 'Importance': importances}).sort_values(by='Importance', ascending=False).head(top_n)
plt.figure(figsize=(10, top_n * 0.5)); sns.barplot(x='Importance', y='Feature', data=top_features, palette='viridis', orient='h'); plt.title(f'Top {top_n} Features for {model_name}'); plt.tight_layout(); return plt.gcf()
def run_regression_suite(df: pd.DataFrame, progress=gr.Progress()):
progress(0, desc="Splitting data..."); yield "Splitting data (80/20 train/test split)...", None, None
X = df.drop(columns=['pIC50', 'canonical_smiles'], errors='ignore')
y = df['pIC50']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
progress(0.1, desc="Selecting features..."); yield "Performing feature selection (removing low variance)...", None, None
selector = VarianceThreshold(threshold=0.1)
X_train = pd.DataFrame(selector.fit_transform(X_train), columns=X_train.columns[selector.get_support()], index=X_train.index)
X_test = pd.DataFrame(selector.transform(X_test), columns=X_test.columns[selector.get_support()], index=X_test.index)
selected_features = X_train.columns.tolist()
model_defs = [('Linear Regression', LinearRegression()), ('Ridge', Ridge(random_state=42)), ('Lasso', Lasso(random_state=42)), ('Random Forest', RandomForestRegressor(random_state=42, n_jobs=-1)), ('Gradient Boosting', GradientBoostingRegressor(random_state=42))]
if _has_extra_libs: model_defs.extend([('XGBoost', xgb.XGBRegressor(random_state=42, n_jobs=-1, verbosity=0)), ('LightGBM', lgb.LGBMRegressor(random_state=42, n_jobs=-1, verbosity=-1)), ('CatBoost', cb.CatBoostRegressor(random_state=42, verbose=0))])
results_list, trained_models = [], {}
for i, (name, model) in enumerate(model_defs):
progress(0.2 + (i / len(model_defs)) * 0.8, desc=f"Training {name}...")
yield f"Training {i+1}/{len(model_defs)}: {name}...", None, None
start_time = time.time(); model.fit(X_train, y_train); y_pred = model.predict(X_test)
results_list.append({'Model': name, 'RΒ²': r2_score(y_test, y_pred), 'MAE': mean_absolute_error(y_test, y_pred), 'RMSE': np.sqrt(mean_squared_error(y_test, y_pred)), 'Time (s)': f"{time.time() - start_time:.2f}"})
trained_models[name] = model
results_df = pd.DataFrame(results_list).sort_values(by='RΒ²', ascending=False).reset_index(drop=True)
plotter = ModelPlotter(trained_models, X_test, y_test)
model_run_results = ModelRunResult(results_df, plotter, trained_models, selected_features)
model_choices = results_df['Model'].tolist()
yield "β
Model training & evaluation complete.", model_run_results, gr.Dropdown(choices=model_choices, interactive=True)
# Replacement for mols2grid.display in Step 3
def create_prediction_grid_html(df, smiles_col='canonical_smiles', pred_col='predicted_pIC50', max_mols=20):
html_parts = ['<div style="display: flex; flex-wrap: wrap; gap: 10px;">']
for idx, row in df.head(max_mols).iterrows():
smiles = row[smiles_col]
pred_pic50 = row[pred_col]
if pd.isna(pred_pic50):
continue
mol = Chem.MolFromSmiles(smiles)
if mol:
# Generate molecule image
img = Draw.MolToImage(mol, size=(200, 200))
# Convert to base64
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Create HTML for this molecule
mol_html = f'''
<div style="border: 1px solid #ccc; padding: 10px; border-radius: 5px; text-align: center;">
<img src="data:image/png;base64,{img_str}" alt="Molecule" style="max-width: 200px;">
<p><strong>Predicted pIC50:</strong> {pred_pic50:.2f}</p>
<p style="font-size: 10px; word-break: break-all;">{smiles}</p>
</div>
'''
html_parts.append(mol_html)
html_parts.append('</div>')
return ''.join(html_parts)
def predict_on_upload(uploaded_file, model_name, current_state, progress=gr.Progress()):
if not uploaded_file: raise gr.Error("Please upload a file.")
if not model_name: raise gr.Error("Please select a trained model.")
model_run_results = current_state.get('model_results')
fingerprint_type = current_state.get('fingerprint_type')
if not model_run_results or not fingerprint_type: raise gr.Error("Please run Steps 2 and 3 first.")
model = model_run_results.models.get(model_name)
selected_features = model_run_results.selected_features
if model is None: raise gr.Error(f"Model '{model_name}' not found.")
smi_file, output_csv = 'predict.smi', 'predict_fp.csv'
try:
progress(0, desc="Reading & processing new molecules..."); yield "Reading uploaded file...", None, None
df_new = pd.read_csv(uploaded_file.name)
if 'canonical_smiles' not in df_new.columns: raise gr.Error("CSV must contain a 'canonical_smiles' column.")
df_new = df_new.reset_index().rename(columns={'index': 'mol_id'})
padel_input = pd.DataFrame({'smiles': df_new['canonical_smiles'], 'name': df_new['mol_id']})
padel_input.to_csv(smi_file, sep='\t', index=False, header=False)
if os.path.exists(output_csv): os.remove(output_csv)
progress(0.3, desc="Calculating fingerprints..."); yield "Calculating fingerprints for new molecules...", None, None
padeldescriptor(mol_dir=smi_file, d_file=output_csv, descriptortypes=fp_config.get(fingerprint_type), detectaromaticity=True, standardizenitro=True, threads=-1, removesalt=True, log=False, fingerprints=True)
if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0: raise gr.Error("PaDEL calculation failed for the uploaded molecules.")
progress(0.7, desc="Aligning features and predicting..."); yield "Aligning features and predicting...", None, None
df_fp = pd.read_csv(output_csv).rename(columns={'Name': 'mol_id'})
X_new = df_fp.set_index('mol_id')
X_new_aligned = X_new.reindex(columns=selected_features, fill_value=0)[selected_features]
predictions = model.predict(X_new_aligned)
results_subset = pd.DataFrame({'mol_id': X_new_aligned.index, 'predicted_pIC50': predictions})
df_results = pd.merge(df_new, results_subset, on='mol_id', how='left')
progress(0.9, desc="Generating visualization..."); yield "Generating visualization...", None, None
# Replacement for mols22grid.display in Step 3
df_grid_view = df_results.dropna(subset=['predicted_pIC50']).copy()
mols_html = "<h3>No molecules with successful predictions to display.</h3>"
if not df_grid_view.empty:
mols_html = create_prediction_grid_html(df_grid_view)
progress(1, desc="Complete!"); yield "β
Prediction complete.", df_results[['canonical_smiles', 'predicted_pIC50']], mols_html
finally:
if os.path.exists(smi_file): os.remove(smi_file)
if os.path.exists(output_csv): os.remove(output_csv)
# ==============================================================================
# === GRADIO INTERFACE ===
# ==============================================================================
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky"), title="Comprehensive Drug Discovery Workflow") as demo:
gr.Markdown("# π§ͺ Comprehensive Drug Discovery Workflow")
gr.Markdown("A 3-step application to fetch, analyze, and model chemical bioactivity data.")
app_state = gr.State({})
with gr.Tabs():
with gr.Tab("Step 1: Data Collection & EDA"):
gr.Markdown("## Fetch Bioactivity Data from ChEMBL and Perform Exploratory Analysis")
gr.Markdown(
"This app allows you to fetch bioactivity data, perform exploratory data analysis, "
"engineer molecular features, and train machine learning models for drug discovery. "
"For an efficient example, use 'coronavirus' as the target query and select 'CHEMBL3927'."
)
with gr.Row():
query_input = gr.Textbox(label="Target Query", placeholder="e.g., acetylcholinesterase, BRAF kinase", scale=3)
fetch_btn = gr.Button("Fetch Targets", variant="primary", scale=1)
status_step1_fetch = gr.Textbox(label="Status", interactive=False)
target_id_table = gr.Dataframe(label="Available Targets", interactive=False, headers=["target_chembl_id", "pref_name", "organism"])
with gr.Row():
selected_target_dropdown = gr.Dropdown(label="Select Target ChEMBL ID", interactive=True, scale=3)
process_btn = gr.Button("Process Data & Run EDA", variant="primary", scale=1, interactive=False)
status_step1_process = gr.Textbox(label="Status", interactive=False)
gr.Markdown("### Filtered Data & Analysis")
bioactivity_class_selector = gr.CheckboxGroup(["active", "inactive", "intermediate"], label="Filter by Bioactivity Class", value=["active", "inactive", "intermediate"])
df_output_s1 = gr.Dataframe(label="Cleaned Bioactivity Data")
with gr.Tabs():
with gr.Tab("Chemical Space Overview"):
with gr.Row():
freq_plot_output = gr.Plot(label="Frequency of Bioactivity Classes")
scatter_plot_output = gr.Plot(label="Scatter Plot: MW vs LogP")
with gr.Tab("pIC50 Analysis"):
with gr.Row():
pic50_plot_output = gr.Plot(label="pIC50 Box Plot")
pic50_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for pIC50")
with gr.Tab("Molecular Weight Analysis"):
with gr.Row():
mw_plot_output = gr.Plot(label="MW Box Plot")
mw_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for MW")
with gr.Tab("LogP Analysis"):
with gr.Row():
logp_plot_output = gr.Plot(label="LogP Box Plot")
logp_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for LogP")
with gr.Tab("H-Bond Donor/Acceptor Analysis"):
with gr.Row():
hdonors_plot_output = gr.Plot(label="H-Donors Box Plot")
hacceptors_plot_output = gr.Plot(label="H-Acceptors Box Plot")
with gr.Row():
hdonors_stats_output = gr.Dataframe(label="Stats for H-Donors")
hacceptors_stats_output = gr.Dataframe(label="Stats for H-Acceptors")
with gr.Tab("Step 2: Feature Engineering"):
# UI Definition for Step 2...
gr.Markdown("## Calculate Molecular Fingerprints using PaDEL")
with gr.Row():
fingerprint_dropdown = gr.Dropdown(choices=FP_list, value='PubChem' if 'PubChem' in FP_list else None, label="Select Fingerprint Method", scale=3)
calculate_fp_btn = gr.Button("Calculate Fingerprints", variant="primary", scale=1)
status_step2 = gr.Textbox(label="Status", interactive=False)
output_df_s2 = gr.Dataframe(label="Final Processed Data", wrap=True)
download_s2 = gr.DownloadButton("Download Feature Data (CSV)", variant="secondary", visible=False)
mols_grid_s2 = gr.HTML(label="Interactive Molecule Viewer")
with gr.Tab("Step 3: Model Training & Prediction"):
# UI Definition for Step 3...
gr.Markdown("## Train Regression Models and Predict pIC50")
with gr.Tabs():
with gr.Tab("Model Training & Evaluation"):
train_models_btn = gr.Button("Train All Models", variant="primary")
status_step3_train = gr.Textbox(label="Status", interactive=False)
model_results_df = gr.DataFrame(label="Ranked Model Results", interactive=False)
with gr.Row():
model_selector_s3 = gr.Dropdown(label="Select Model to Analyze", interactive=False)
feature_count_s3 = gr.Number(label="Top Features to Show", value=7, minimum=3, maximum=20, step=1)
with gr.Tabs():
with gr.Tab("Validation Plots"): validation_plot_s3 = gr.Plot(label="Model Validation Plots")
with gr.Tab("Feature Importance"): feature_plot_s3 = gr.Plot(label="Top Feature Importances")
with gr.Tab("Predict on New Data"):
gr.Markdown("Upload a CSV with a `canonical_smiles` column to predict pIC50.")
with gr.Row():
upload_predict_file = gr.File(label="Upload CSV for Prediction", file_types=[".csv"])
predict_btn_s3 = gr.Button("Run Prediction", variant="primary")
status_step3_predict = gr.Textbox(label="Status", interactive=False)
prediction_results_df = gr.DataFrame(label="Prediction Results")
prediction_mols_grid = gr.HTML(label="Interactive Molecular Grid of Predictions")
# --- EVENT HANDLERS ---
def enable_process_button(target_id): return gr.update(interactive=bool(target_id))
def process_and_analyze_wrapper(target_id, selected_classes, current_state, progress=gr.Progress()):
if not target_id: raise gr.Error("Please select a target ChEMBL ID first.")
progress(0, desc="Fetching data..."); raw_data, msg1 = get_bioactivity_data(target_id); yield {status_step1_process: gr.update(value=msg1)}
progress(0.3, desc="Cleaning data..."); processed_data, msg2 = clean_and_process_data(raw_data); yield {df_output_s1: processed_data, status_step1_process: gr.update(value=msg2)}
current_state['cleaned_data'] = processed_data
progress(0.6, desc="Running EDA..."); plots_and_stats = run_eda_analysis(processed_data, selected_classes); msg3 = plots_and_stats[-1]
progress(1, desc="Done!")
filtered_data = processed_data[processed_data.bioactivity_class.isin(selected_classes)] if not processed_data.empty else pd.DataFrame()
outputs = [filtered_data] + list(plots_and_stats[:-1]) + [msg3, current_state]
output_components = [df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process, app_state]
yield dict(zip(output_components, outputs))
def update_analysis_on_filter_change(selected_classes, current_state):
cleaned_data = current_state.get('cleaned_data')
if cleaned_data is None or cleaned_data.empty: return (pd.DataFrame(),) + (None,) * 11 + ("No data available.",)
plots_and_stats = run_eda_analysis(cleaned_data, selected_classes); msg = plots_and_stats[-1]
filtered_data = cleaned_data[cleaned_data.bioactivity_class.isin(selected_classes)]
return (filtered_data,) + plots_and_stats[:-1] + (msg,)
def handle_model_training(current_state, progress=gr.Progress(track_tqdm=True)):
fingerprint_data = current_state.get('fingerprint_data')
if fingerprint_data is None or fingerprint_data.empty: raise gr.Error("No feature data. Please complete Step 2.")
for status_msg, model_results, model_choices_update in run_regression_suite(fingerprint_data, progress=progress):
if model_results: current_state['model_results'] = model_results
yield status_msg, model_results.dataframe if model_results else None, model_choices_update, current_state
def save_dataframe_as_csv(df):
if df is None or df.empty: return None
filename = "feature_engineered_data.csv"; df.to_csv(filename, index=False); return gr.File(value=filename, visible=True)
def update_analysis_plots(model_name, feature_count, current_state):
model_results = current_state.get('model_results')
if not model_results or not model_name: return None, None
plotter = model_results.plotter; validation_fig = plotter.plot_validation(model_name); feature_fig = plotter.plot_feature_importance(model_name, int(feature_count)); plt.close('all'); return validation_fig, feature_fig
fetch_btn.click(fn=get_target_chembl_id, inputs=query_input, outputs=[target_id_table, selected_target_dropdown, status_step1_fetch], show_progress="minimal")
selected_target_dropdown.change(fn=enable_process_button, inputs=selected_target_dropdown, outputs=process_btn, show_progress="hidden")
process_btn.click(fn=process_and_analyze_wrapper, inputs=[selected_target_dropdown, bioactivity_class_selector, app_state], outputs=[df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process, app_state])
bioactivity_class_selector.change(fn=update_analysis_on_filter_change, inputs=[bioactivity_class_selector, app_state], outputs=[df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process], show_progress="minimal")
calculate_fp_btn.click(fn=calculate_fingerprints, inputs=[app_state, fingerprint_dropdown], outputs=[status_step2, output_df_s2, download_s2, mols_grid_s2, app_state])
# The download button click handler was incorrect, it should take the dataframe from the state
@download_s2.click(inputs=app_state, outputs=download_s2, show_progress="hidden")
def download_handler(current_state):
df_to_download = current_state.get('fingerprint_data')
return save_dataframe_as_csv(df_to_download)
train_models_btn.click(fn=handle_model_training, inputs=[app_state], outputs=[status_step3_train, model_results_df, model_selector_s3, app_state])
for listener in [model_selector_s3.change, feature_count_s3.change]: listener(fn=update_analysis_plots, inputs=[model_selector_s3, feature_count_s3, app_state], outputs=[validation_plot_s3, feature_plot_s3], show_progress="minimal")
predict_btn_s3.click(fn=predict_on_upload, inputs=[upload_predict_file, model_selector_s3, app_state], outputs=[status_step3_predict, prediction_results_df, prediction_mols_grid])
if __name__ == "__main__":
demo.launch(debug=True) |