File size: 15,007 Bytes
df9da26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Import necessary libraries
import pandas as pd
import numpy as np
import time
from sklearn.model_selection import train_test_split

# For plotting
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats

# Import models and metrics
from sklearn.linear_model import (
    LinearRegression, Ridge, Lasso, ElasticNet, BayesianRidge,
    HuberRegressor, PassiveAggressiveRegressor, OrthogonalMatchingPursuit,
    LassoLars
)
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import (
    RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor,
    AdaBoostRegressor
)
from sklearn.neighbors import KNeighborsRegressor
from sklearn.dummy import DummyRegressor
from sklearn.metrics import (
    mean_absolute_error, mean_squared_error, r2_score,
    mean_absolute_percentage_error, mean_squared_log_error
)

# Import optional libraries
try:
    import xgboost as xgb
    import lightgbm as lgb
    import catboost as cb
    import mols2grid
    _has_extra_libs = True
except ImportError:
    _has_extra_libs = False

# --- Helper Functions ---

def _create_abbreviation(name: str) -> str:
    """Creates a capitalized abbreviation from a model name."""
    if name == 'Lasso Regression':
        return 'LaR'
    if name == 'Linear Regression':
        return 'LR'
    return "".join([word[0] for word in name.split()]).upper()

def _rmsle(y_true, y_pred):
    """Calculates the Root Mean Squared Log Error."""
    y_pred_clipped = np.maximum(y_pred, 0)
    y_true_clipped = np.maximum(y_true, 0)
    return np.sqrt(mean_squared_log_error(y_true_clipped, y_pred_clipped))

# --- Plotting Class ---

class ModelPlotter:
    """A class to handle plotting for trained regression models."""
    def __init__(self, models: dict, X_test: pd.DataFrame, y_test: pd.Series, df_test: pd.DataFrame):
        self._models = models
        self._X_test = X_test # Numeric features for standard plots
        self._y_test = y_test
        self._df_test = df_test # Original test dataframe with all columns for molecule plotting
        self.full_names = {abbr: model.__class__.__name__ for abbr, model in models.items()}

    def plot(self, model_abbr: str):
        """

        Generates a 2x2 grid of validation plots for a specified model.

        

        Args:

            model_abbr (str): The abbreviation of the model to plot (e.g., 'RFR').

        """
        if model_abbr not in self._models:
            raise ValueError(f"Model '{model_abbr}' not found. Available models: {list(self._models.keys())}")

        model = self._models[model_abbr]
        model_full_name = self.full_names.get(model_abbr, model_abbr)
        
        y_pred = model.predict(self._X_test)
        residuals = self._y_test - y_pred

        sns.set_theme(style='whitegrid')
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        fig.suptitle(f'Model Validation Plots for {model_full_name} ({model_abbr})', fontsize=20, y=1.03)

        # 1. Actual vs. Predicted
        sns.scatterplot(x=self._y_test, y=y_pred, ax=axes[0, 0], alpha=0.6)
        axes[0, 0].set_title('Actual vs. Predicted Values', fontsize=14)
        axes[0, 0].set_xlabel('Actual Values', fontsize=12)
        axes[0, 0].set_ylabel('Predicted Values', fontsize=12)
        lims = [min(self._y_test.min(), y_pred.min()), max(self._y_test.max(), y_pred.max())]
        axes[0, 0].plot(lims, lims, 'r--', alpha=0.75, zorder=0)

        # 2. Residuals vs. Predicted
        sns.scatterplot(x=y_pred, y=residuals, ax=axes[0, 1], alpha=0.6)
        axes[0, 1].axhline(y=0, color='r', linestyle='--')
        axes[0, 1].set_title('Residuals vs. Predicted Values', fontsize=14)
        axes[0, 1].set_xlabel('Predicted Values', fontsize=12)
        axes[0, 1].set_ylabel('Residuals', fontsize=12)
        
        # 3. Histogram of Residuals
        sns.histplot(residuals, kde=True, ax=axes[1, 0])
        axes[1, 0].set_title('Distribution of Residuals', fontsize=14)
        axes[1, 0].set_xlabel('Residuals', fontsize=12)
        axes[1, 0].set_ylabel('Frequency', fontsize=12)
        
        # 4. Q-Q Plot
        stats.probplot(residuals, dist="norm", plot=axes[1, 1])
        axes[1, 1].get_lines()[0].set_markerfacecolor('#1f77b4')
        axes[1, 1].get_lines()[0].set_markeredgecolor('#1f77b4')
        axes[1, 1].get_lines()[1].set_color('r')
        axes[1, 1].set_title('Normal Q-Q Plot of Residuals', fontsize=14)
        axes[1, 1].set_xlabel('Theoretical Quantiles', fontsize=12)
        axes[1, 1].set_ylabel('Sample Quantiles', fontsize=12)

        plt.tight_layout()
        plt.show()

    def plot_feature_importance(self, model_abbr: str, top_n: int = 7):
        """

        Plots the top N most important features for a specified model.

        This function works for models with `feature_importances_` (e.g., RandomForest)

        or `coef_` (e.g., LinearRegression) attributes.



        Args:

            model_abbr (str): The abbreviation of the model to plot (e.g., 'RFR').

            top_n (int): The number of top features to display. Defaults to 7.

        """
        if model_abbr not in self._models:
            raise ValueError(f"Model '{model_abbr}' not found. Available models: {list(self._models.keys())}")

        model = self._models[model_abbr]
        model_full_name = self.full_names.get(model_abbr, model_abbr)
        feature_names = self._X_test.columns
        importance_type = ''

        if hasattr(model, 'feature_importances_'):
            importances = model.feature_importances_
            importance_type = 'Importance'
        elif hasattr(model, 'coef_'):
            if model.coef_.ndim > 1:
                importances = np.mean(np.abs(model.coef_), axis=0)
            else:
                importances = np.abs(model.coef_)
            importance_type = 'Importance (Absolute Coefficient Value)'
        else:
            print(f"'{model_full_name}' does not support feature importance plotting (no 'feature_importances_' or 'coef_' attribute).")
            return

        feature_importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances})
        top_features = feature_importance_df.sort_values(by='Importance', ascending=False).head(top_n)

        plt.figure(figsize=(12, top_n * 0.6))
        sns.barplot(x='Importance', y='Feature', data=top_features, palette='viridis', orient='h')
        
        plt.title(f'Top {top_n} Feature Importances for {model_full_name} ({model_abbr})', fontsize=16, pad=20)
        plt.xlabel(importance_type, fontsize=12)
        plt.ylabel('Feature', fontsize=12)
        plt.tight_layout()
        plt.show()

    def plot_mols_for_top_features(self, model_abbr: str, smiles_col: str, top_n: int = 5, **kwargs):
        """

        Displays an interactive grid of test set molecules, highlighting the top model features.

        Requires the 'mols2grid' library.



        Args:

            model_abbr (str): The abbreviation of the model to use for feature importances.

            smiles_col (str): The name of the column in the original DataFrame containing SMILES strings.

            top_n (int): The number of top features to display in the grid's subset and tooltip.

            **kwargs: Additional keyword arguments passed to mols2grid.display().

                      This can be used to customize 'subset', 'tooltip', 'rename', etc.

        """
        if not _has_extra_libs or 'mols2grid' not in globals():
            print("mols2grid library is not installed. Please install it using 'pip install mols2grid'.")
            return

        if model_abbr not in self._models:
            raise ValueError(f"Model '{model_abbr}' not found. Available models: {list(self._models.keys())}")

        if smiles_col not in self._df_test.columns:
            raise ValueError(f"SMILES column '{smiles_col}' not found in the DataFrame. Please ensure it was present in the initial DataFrame.")
        
        model = self._models[model_abbr]
        
        # Get feature importances
        if hasattr(model, 'feature_importances_'):
            importances = model.feature_importances_
        elif hasattr(model, 'coef_') and model.coef_.ndim == 1:
            importances = np.abs(model.coef_)
        elif hasattr(model, 'coef_'):
            importances = np.mean(np.abs(model.coef_), axis=0)
        else:
            print(f"Cannot get feature importances for model '{model_abbr}'.")
            return
            
        feature_names = self._X_test.columns
        feature_importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances})
        top_features = feature_importance_df.sort_values(by='Importance', ascending=False).head(top_n)
        top_feature_names = top_features['Feature'].tolist()

        # Prepare DataFrame for mols2grid
        df_for_grid = self._df_test.copy()
        
        # Set up default mols2grid display options, which user can override with kwargs
        display_kwargs = {
            "smiles_col": smiles_col,
            "subset": ["img", self._y_test.name] + top_feature_names,
            "tooltip": [self._y_test.name] + top_feature_names
        }
        display_kwargs.update(kwargs)

        print(f"Generating molecular grid for top {top_n} features of model {model_abbr}...")
        return mols2grid.display(df_for_grid, **display_kwargs)

# --- Result Container Class ---
class RegressionResult:
    """

    A container for regression results designed for rich display in notebooks.

    Access the results DataFrame via the `.dataframe` attribute, the

    ModelPlotter object via the `.plotter` attribute, and the dictionary of

    trained models via the `.models` attribute.

    

    Example:

    >>> result = regression(df, 'target')

    >>> best_model = result.models['RFR'] 

    >>> result.plotter.plot_feature_importance('RFR')

    >>> result.plotter.plot_mols_for_top_features('RFR', smiles_col='SMILES')

    """
    def __init__(self, results_df: pd.DataFrame, plotter: ModelPlotter, trained_models: dict):
        self.dataframe = results_df
        self.plotter = plotter
        self.models = trained_models

    def _repr_html_(self):
        """Returns the HTML representation of the results DataFrame."""
        return self.dataframe.to_html(index=False, float_format='{:.4f}'.format)

    def __repr__(self):
        """Returns the string representation for display in non-HTML environments."""
        return self.dataframe.to_string(index=False)

# --- Main Function ---
def regression(df: pd.DataFrame, target_variable: str) -> RegressionResult:
    """

    Trains, evaluates, and provides plotting for multiple regression models.



    Args:

        df (pd.DataFrame): The input dataframe. Must contain the target variable

                           and all features. For molecule plotting, it should also

                           contain a SMILES column.

        target_variable (str): The name of the target column.



    Returns:

        RegressionResult: An object containing the performance metrics DataFrame,

                          a ModelPlotter, and a dictionary of trained models.

    """
    # 1. Split data while keeping original structure for molecule plotting
    indices = df.index
    train_indices, test_indices = train_test_split(indices, test_size=0.2, random_state=42)
    df_train = df.loc[train_indices]
    df_test = df.loc[test_indices]

    # 2. Prepare numeric data for training and evaluation
    X_train = df_train.drop(columns=[target_variable]).apply(pd.to_numeric, errors='coerce').fillna(0)
    y_train = df_train[target_variable]
    X_test = df_test.drop(columns=[target_variable]).apply(pd.to_numeric, errors='coerce').fillna(0)
    y_test = df_test[target_variable]

    # ... (rest of the models are the same)
    model_definitions = [
        ('Linear Regression', LinearRegression()),
        ('Ridge Regression', Ridge(random_state=42)),
        ('Lasso Regression', Lasso(random_state=42)),
        ('Elastic Net', ElasticNet(random_state=42)),
        ('Lasso Least Angle Regression', LassoLars(random_state=42)),
        ('Orthogonal Matching Pursuit', OrthogonalMatchingPursuit()),
        ('Bayesian Ridge', BayesianRidge()),
        ('Huber Regressor', HuberRegressor()),
        ('Passive Aggressive Regressor', PassiveAggressiveRegressor(random_state=42)),
        ('K Neighbors Regressor', KNeighborsRegressor()),
        ('Decision Tree Regressor', DecisionTreeRegressor(random_state=42)),
        ('Random Forest Regressor', RandomForestRegressor(random_state=42, n_jobs=-1)),
        ('Extra Trees Regressor', ExtraTreesRegressor(random_state=42, n_jobs=-1)),
        ('AdaBoost Regressor', AdaBoostRegressor(random_state=42)),
        ('Gradient Boosting Regressor', GradientBoostingRegressor(random_state=42)),
        ('Dummy Regressor', DummyRegressor(strategy='mean'))
    ]
    if _has_extra_libs:
        model_definitions.extend([
            ('Extreme Gradient Boosting', xgb.XGBRegressor(random_state=42, n_jobs=-1, verbosity=0)),
            ('Light Gradient Boosting Machine', lgb.LGBMRegressor(random_state=42, n_jobs=-1, verbosity=-1)),
            ('CatBoost Regressor', cb.CatBoostRegressor(random_state=42, verbose=0))
        ])

    results_list = []
    trained_models = {}
    print("Starting model training and evaluation...")

    for name, model in model_definitions:
        abbr = _create_abbreviation(name)
        start_time = time.time()
        try:
            model.fit(X_train, y_train)
            training_time = time.time() - start_time
            y_pred = model.predict(X_test)
            
            results_list.append({
                'Model Abbreviation': abbr, 'Model': name,
                'MAE': mean_absolute_error(y_test, y_pred),
                'MSE': mean_squared_error(y_test, y_pred),
                'RMSE': np.sqrt(mean_squared_error(y_test, y_pred)),
                'R2': r2_score(y_test, y_pred), 
                'RMSLE': _rmsle(y_test, y_pred),
                'MAPE': mean_absolute_percentage_error(y_test, y_pred),
                'TT (Sec)': training_time
            })
            trained_models[abbr] = model
        except Exception as e:
            print(f"Could not train {name}. Error: {e}")


    print("Evaluation complete.")
    print("=" * 50)
    
    results_df = pd.DataFrame(results_list)
    results_df = results_df.sort_values(by='R2', ascending=False).reset_index(drop=True)
    
    # Pass the original df_test to the plotter for molecule visualization
    plotter = ModelPlotter(trained_models, X_test, y_test, df_test)
    
    return RegressionResult(results_df, plotter, trained_models)