File size: 32,954 Bytes
561a150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# --- IMPORTS ---
# Core and Data Handling
import gradio as gr #
import pandas as pd #
import numpy as np #
import os #
import glob #
import time #
import warnings #

# Chemistry and Cheminformatics
from rdkit import Chem #
from rdkit.Chem import Descriptors, Lipinski #
from chembl_webresource_client.new_client import new_client #
from padelpy import padeldescriptor #
import mols2grid #

# Plotting and Visualization
import matplotlib.pyplot as plt #
import seaborn as sns #
from scipy import stats #
from scipy.stats import mannwhitneyu #

# Machine Learning Models and Metrics
from sklearn.model_selection import train_test_split #
from sklearn.feature_selection import VarianceThreshold #
from sklearn.linear_model import ( #
    LinearRegression, Ridge, Lasso, ElasticNet, BayesianRidge, #
    HuberRegressor, PassiveAggressiveRegressor, OrthogonalMatchingPursuit, #
    LassoLars #
)
from sklearn.tree import DecisionTreeRegressor #
from sklearn.ensemble import ( #
    RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor, #
    AdaBoostRegressor #
)
from sklearn.neighbors import KNeighborsRegressor #
from sklearn.dummy import DummyRegressor #
from sklearn.metrics import ( #
    mean_absolute_error, mean_squared_error, r2_score #
)

# A placeholder class to store all results from a modeling run
class ModelRunResult: #
    def __init__(self, dataframe, plotter, models, selected_features): #
        self.dataframe = dataframe #
        self.plotter = plotter #
        self.models = models #
        self.selected_features = selected_features #

# Optional Advanced Models
try: #
    import xgboost as xgb #
    import lightgbm as lgb #
    import catboost as cb #
    _has_extra_libs = True #
except ImportError: #
    _has_extra_libs = False #
    warnings.warn("Optional libraries (xgboost, lightgbm, catboost) not found. Some models will be unavailable.") #

# --- GLOBAL CONFIGURATION & SETUP ---
warnings.filterwarnings("ignore") #
sns.set_theme(style='whitegrid') #

# --- FINGERPRINT CONFIGURATION ---
DESCRIPTOR_DIR = "padel_descriptors"

# Check if the descriptor directory exists and contains files
if not os.path.isdir(DESCRIPTOR_DIR):
    warnings.warn(
        f"The descriptor directory '{DESCRIPTOR_DIR}' was not found. "
        "Fingerprint calculation will be disabled. Please create this directory and upload your .xml files."
    )
    xml_files = []
else:
    xml_files = sorted(glob.glob(os.path.join(DESCRIPTOR_DIR, '*.xml')))

if not xml_files:
    warnings.warn(
        f"No descriptor .xml files found in the '{DESCRIPTOR_DIR}' directory. "
        "Fingerprint calculation will not be possible."
    )

# The key is the filename without extension; the value is the full path to the file
fp_config = {os.path.splitext(os.path.basename(file))[0]: file for file in xml_files}
FP_list = sorted(list(fp_config.keys()))


# ==============================================================================
# === STEP 1: CORE DATA COLLECTION & EDA FUNCTIONS ===
# ==============================================================================

def get_target_chembl_id(query): #
    try: #
        target = new_client.target #
        res = target.search(query) #
        if not res: #
            return pd.DataFrame(), gr.Dropdown(choices=[], value=None), "No targets found for your query." #
        df = pd.DataFrame(res) #
        return df[["target_chembl_id", "pref_name", "organism"]], gr.Dropdown(choices=df["target_chembl_id"].tolist()), f"Found {len(df)} targets." #
    except Exception as e: #
        raise gr.Error(f"ChEMBL search failed: {e}") #

def get_bioactivity_data(target_id): #
    try: #
        activity = new_client.activity #
        res = activity.filter(target_chembl_id=target_id).filter(standard_type="IC50") #
        if not res: #
            return pd.DataFrame(), "No IC50 bioactivity data found for this target." #
        df = pd.DataFrame(res) #
        return df, f"Fetched {len(df)} data points." #
    except Exception as e: #
        raise gr.Error(f"Failed to fetch bioactivity data: {e}") #

def pIC50_calc(input_df): #
    df_copy = input_df.copy() #
    df_copy['standard_value'] = pd.to_numeric(df_copy['standard_value'], errors='coerce') #
    df_copy.dropna(subset=['standard_value'], inplace=True) #
    df_copy['standard_value_norm'] = df_copy['standard_value'].apply(lambda x: min(x, 100000000)) #
    pIC50_values = [] #
    for i in df_copy['standard_value_norm']: #
        if pd.notna(i) and i > 0: #
            molar = i * (10**-9) #
            pIC50_values.append(-np.log10(molar)) #
        else: #
            pIC50_values.append(np.nan) #
    df_copy['pIC50'] = pIC50_values #
    df_copy['bioactivity_class'] = df_copy['standard_value_norm'].apply( #
        lambda x: "inactive" if pd.notna(x) and x >= 10000 else ("active" if pd.notna(x) and x <= 1000 else "intermediate") #
    )
    return df_copy.drop(columns=['standard_value', 'standard_value_norm']) #

def lipinski_descriptors(smiles_series): #
    moldata, valid_smiles = [], [] #
    for elem in smiles_series: #
        if elem and isinstance(elem, str): #
            mol = Chem.MolFromSmiles(elem) #
            if mol: #
                moldata.append(mol) #
                valid_smiles.append(elem) #
    descriptor_rows = [] #
    for mol in moldata: #
        row = [Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Lipinski.NumHDonors(mol), Lipinski.NumHAcceptors(mol)] #
        descriptor_rows.append(row) #
    columnNames = ["MW", "LogP", "NumHDonors", "NumHAcceptors"] #
    if not descriptor_rows: return pd.DataFrame(columns=columnNames), [] #
    return pd.DataFrame(data=np.array(descriptor_rows), columns=columnNames), valid_smiles #

def clean_and_process_data(df): #
    if df is None or df.empty: raise gr.Error("No data to process. Please fetch data first.") #
    if "canonical_smiles" not in df.columns or df["canonical_smiles"].isnull().all(): #
        try: #
            df["canonical_smiles"] = [c.get("molecule_structures", {}).get("canonical_smiles") for c in new_client.molecule.get(list(df["molecule_chembl_id"]))] #
        except Exception as e: #
            raise gr.Error(f"Could not fetch SMILES from ChEMBL: {e}") #
    df = df[df.standard_value.notna()] #
    df = df[df.canonical_smiles.notna()] #
    df.drop_duplicates(['canonical_smiles'], inplace=True) #
    df["standard_value"] = pd.to_numeric(df["standard_value"], errors='coerce') #
    df.dropna(subset=['standard_value'], inplace=True) #
    df_processed = pIC50_calc(df) #
    df_processed = df_processed[df_processed.pIC50.notna()] #
    if df_processed.empty: return pd.DataFrame(), "No compounds remaining after pIC50 calculation." #
    df_lipinski, valid_smiles = lipinski_descriptors(df_processed['canonical_smiles']) #
    if not valid_smiles: return pd.DataFrame(), "No valid SMILES could be processed for Lipinski descriptors." #
    df_processed = df_processed[df_processed['canonical_smiles'].isin(valid_smiles)].reset_index(drop=True) #
    df_lipinski = df_lipinski.reset_index(drop=True) #
    df_final = pd.concat([df_processed, df_lipinski], axis=1) #
    return df_final, f"Processing complete. {len(df_final)} compounds remain after cleaning." #

def run_eda_analysis(df, selected_classes): #
    if df is None or df.empty: raise gr.Error("No data available for analysis.") #
    df_filtered = df[df.bioactivity_class.isin(selected_classes)].copy() #
    if df_filtered.empty: return (None, None, None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), "No data for selected classes.") #
    plots = [create_frequency_plot(df_filtered), create_scatter_plot(df_filtered)] #
    stats_dfs = [] #
    for desc in ['pIC50', 'MW', 'LogP', 'NumHDonors', 'NumHAcceptors']: #
        plots.append(create_boxplot(df_filtered, desc)) #
        stats_dfs.append(mannwhitney_test(df_filtered, desc)) #
    plt.close('all') #
    return (plots[0], plots[1], plots[2], stats_dfs[0], plots[3], stats_dfs[1], plots[4], stats_dfs[2], plots[5], stats_dfs[3], plots[6], stats_dfs[4], f"EDA complete for {len(df_filtered)} compounds.") #

def create_frequency_plot(df): #
    plt.figure(figsize=(5.5, 5.5)); sns.barplot(x=df['bioactivity_class'].value_counts().index, y=df['bioactivity_class'].value_counts().values, palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}); plt.xlabel('Bioactivity Class', fontsize=12); plt.ylabel('Frequency', fontsize=12); plt.title('Frequency of Bioactivity Classes', fontsize=14); return plt.gcf() #
def create_scatter_plot(df): #
    plt.figure(figsize=(5.5, 5.5)); sns.scatterplot(data=df, x='MW', y='LogP', hue='bioactivity_class', size='pIC50', palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}, sizes=(20, 200), alpha=0.7); plt.xlabel('Molecular Weight (MW)', fontsize=12); plt.ylabel('LogP', fontsize=12); plt.title('Chemical Space: MW vs. LogP', fontsize=14); plt.legend(title='Bioactivity Class'); return plt.gcf() #
def create_boxplot(df, descriptor): #
    plt.figure(figsize=(5.5, 5.5)); sns.boxplot(x='bioactivity_class', y=descriptor, data=df, palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}); plt.xlabel('Bioactivity Class', fontsize=12); plt.ylabel(descriptor, fontsize=12); plt.title(f'{descriptor} by Bioactivity Class', fontsize=14); return plt.gcf() #
def mannwhitney_test(df, descriptor): #
    results = [] #
    for c1, c2 in [('active', 'inactive'), ('active', 'intermediate'), ('inactive', 'intermediate')]: #
        if c1 in df['bioactivity_class'].unique() and c2 in df['bioactivity_class'].unique(): #
            d1, d2 = df[df.bioactivity_class == c1][descriptor].dropna(), df[df.bioactivity_class == c2][descriptor].dropna() #
            if not d1.empty and not d2.empty: #
                stat, p = mannwhitneyu(d1, d2) #
                results.append({'Comparison': f'{c1.title()} vs {c2.title()}', 'Statistics': stat, 'p-value': p, 'Interpretation': 'Different distribution (p < 0.05)' if p <= 0.05 else 'Same distribution (p > 0.05)'}) #
    return pd.DataFrame(results) #

# ==============================================================================
# === STEP 2: FEATURE ENGINEERING FUNCTIONS ===
# ==============================================================================

def calculate_fingerprints(current_state, fingerprint_type, progress=gr.Progress()): #
    input_df = current_state.get('cleaned_data') #
    if input_df is None or input_df.empty: raise gr.Error("No cleaned data found. Please complete Step 1.") #
    if not fingerprint_type: raise gr.Error("Please select a fingerprint type.") #
    progress(0, desc="Starting..."); yield f"πŸ§ͺ Starting fingerprint calculation...", None, gr.update(visible=False), None, current_state #
    try: #
        smi_file, output_csv = 'molecule.smi', 'fingerprints.csv' #
        
        input_df[['canonical_smiles', 'canonical_smiles']].to_csv(smi_file, sep='\t', index=False, header=False) #
        
        if os.path.exists(output_csv): os.remove(output_csv) #
        descriptortypes = fp_config.get(fingerprint_type) #
        if not descriptortypes: raise gr.Error(f"Descriptor XML for '{fingerprint_type}' not found.") #
        
        progress(0.3, desc="βš—οΈ Running PaDEL..."); yield f"βš—οΈ Running PaDEL...", None, gr.update(visible=False), None, current_state #
        padeldescriptor(mol_dir=smi_file, d_file=output_csv, descriptortypes=descriptortypes, detectaromaticity=True, standardizenitro=True, standardizetautomers=True, threads=-1, removesalt=True, log=False, fingerprints=True) #
        if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0: #
            raise gr.Error("PaDEL failed to produce an output file. Check molecule validity.") #

        progress(0.7, desc="πŸ“Š Processing results..."); yield "πŸ“Š Processing results...", None, gr.update(visible=False), None, current_state #
        df_X = pd.read_csv(output_csv).rename(columns={'Name': 'canonical_smiles'}) #
        
        final_df = pd.merge(input_df[['canonical_smiles', 'pIC50']], df_X, on='canonical_smiles', how='inner') #
        
        current_state['fingerprint_data'] = final_df; current_state['fingerprint_type'] = fingerprint_type #
        progress(0.9, desc="πŸ–ΌοΈ Generating molecule grid...") #
        mols_html = mols2grid.display(final_df, smiles_col='canonical_smiles', subset=['img', 'pIC50'], rename={"pIC50": "pIC50"}, transform={"pIC50": lambda x: f"{x:.2f}"})._repr_html_() #
        success_msg = f"βœ… Success! Generated {len(df_X.columns) -1} descriptors for {len(final_df)} molecules." #
        progress(1, desc="Completed!"); yield success_msg, final_df, gr.update(visible=True), gr.update(value=mols_html, visible=True), current_state #
    except Exception as e: raise gr.Error(f"Calculation failed: {e}") #
    finally: #
        if os.path.exists('molecule.smi'): os.remove('molecule.smi') #
        if os.path.exists('fingerprints.csv'): os.remove('fingerprints.csv') #

# ==============================================================================
# === STEP 3: MODEL TRAINING & PREDICTION FUNCTIONS ===
# ==============================================================================
class ModelPlotter: #
    def __init__(self, models: dict, X_test: pd.DataFrame, y_test: pd.Series): #
        self._models, self._X_test, self._y_test = models, X_test, y_test #
    def plot_validation(self, model_name: str): #
        if model_name not in self._models: raise ValueError(f"Model '{model_name}' not found.") #
        model, y_pred = self._models[model_name], self._models[model_name].predict(self._X_test) #
        residuals = self._y_test - y_pred #
        fig, axes = plt.subplots(2, 2, figsize=(12, 10)); fig.suptitle(f'Model Validation Plots for {model_name}', fontsize=16, y=1.02) #
        sns.scatterplot(x=self._y_test, y=y_pred, ax=axes[0, 0], alpha=0.6); axes[0, 0].set_title('Actual vs. Predicted'); axes[0, 0].set_xlabel('Actual pIC50'); axes[0, 0].set_ylabel('Predicted pIC50'); lims = [min(self._y_test.min(), y_pred.min()), max(self._y_test.max(), y_pred.max())]; axes[0, 0].plot(lims, lims, 'r--', alpha=0.75, zorder=0) #
        sns.scatterplot(x=y_pred, y=residuals, ax=axes[0, 1], alpha=0.6); axes[0, 1].axhline(y=0, color='r', linestyle='--'); axes[0, 1].set_title('Residuals vs. Predicted'); axes[0, 1].set_xlabel('Predicted pIC50'); axes[0, 1].set_ylabel('Residuals') #
        sns.histplot(residuals, kde=True, ax=axes[1, 0]); axes[1, 0].set_title('Distribution of Residuals') #
        stats.probplot(residuals, dist="norm", plot=axes[1, 1]); axes[1, 1].set_title('Normal Q-Q Plot') #
        plt.tight_layout(); return fig #
    def plot_feature_importance(self, model_name: str, top_n: int = 7): #
        if model_name not in self._models: raise ValueError(f"Model '{model_name}' not found.") #
        model = self._models[model_name] #
        if hasattr(model, 'feature_importances_'): importances = model.feature_importances_ #
        elif hasattr(model, 'coef_'): importances = np.abs(model.coef_) #
        else: return None #
        top_features = pd.DataFrame({'Feature': self._X_test.columns, 'Importance': importances}).sort_values(by='Importance', ascending=False).head(top_n) #
        plt.figure(figsize=(10, top_n * 0.5)); sns.barplot(x='Importance', y='Feature', data=top_features, palette='viridis', orient='h'); plt.title(f'Top {top_n} Features for {model_name}'); plt.tight_layout(); return plt.gcf() #

def run_regression_suite(df: pd.DataFrame, progress=gr.Progress()): #
    progress(0, desc="Splitting data..."); yield "Splitting data (80/20 train/test split)...", None, None #
    X = df.drop(columns=['pIC50', 'canonical_smiles'], errors='ignore') #
    y = df['pIC50'] #
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) #

    progress(0.1, desc="Selecting features..."); yield "Performing feature selection (removing low variance)...", None, None #
    selector = VarianceThreshold(threshold=0.1) #
    X_train = pd.DataFrame(selector.fit_transform(X_train), columns=X_train.columns[selector.get_support()], index=X_train.index) #
    X_test = pd.DataFrame(selector.transform(X_test), columns=X_test.columns[selector.get_support()], index=X_test.index) #
    selected_features = X_train.columns.tolist() #

    model_defs = [('Linear Regression', LinearRegression()), ('Ridge', Ridge(random_state=42)), ('Lasso', Lasso(random_state=42)), ('Random Forest', RandomForestRegressor(random_state=42, n_jobs=-1)), ('Gradient Boosting', GradientBoostingRegressor(random_state=42))] #
    if _has_extra_libs: model_defs.extend([('XGBoost', xgb.XGBRegressor(random_state=42, n_jobs=-1, verbosity=0)), ('LightGBM', lgb.LGBMRegressor(random_state=42, n_jobs=-1, verbosity=-1)), ('CatBoost', cb.CatBoostRegressor(random_state=42, verbose=0))]) #
    
    results_list, trained_models = [], {} #
    for i, (name, model) in enumerate(model_defs): #
        progress(0.2 + (i / len(model_defs)) * 0.8, desc=f"Training {name}...") #
        yield f"Training {i+1}/{len(model_defs)}: {name}...", None, None #
        start_time = time.time(); model.fit(X_train, y_train); y_pred = model.predict(X_test) #
        results_list.append({'Model': name, 'RΒ²': r2_score(y_test, y_pred), 'MAE': mean_absolute_error(y_test, y_pred), 'RMSE': np.sqrt(mean_squared_error(y_test, y_pred)), 'Time (s)': f"{time.time() - start_time:.2f}"}) #
        trained_models[name] = model #

    results_df = pd.DataFrame(results_list).sort_values(by='RΒ²', ascending=False).reset_index(drop=True) #
    plotter = ModelPlotter(trained_models, X_test, y_test) #
    model_run_results = ModelRunResult(results_df, plotter, trained_models, selected_features) #
    
    model_choices = results_df['Model'].tolist() #
    yield "βœ… Model training & evaluation complete.", model_run_results, gr.Dropdown(choices=model_choices, interactive=True) #

def predict_on_upload(uploaded_file, model_name, current_state, progress=gr.Progress()): #
    if not uploaded_file: raise gr.Error("Please upload a file.") #
    if not model_name: raise gr.Error("Please select a trained model.") #
    model_run_results = current_state.get('model_results') #
    fingerprint_type = current_state.get('fingerprint_type') #
    if not model_run_results or not fingerprint_type: raise gr.Error("Please run Steps 2 and 3 first.") #
    
    model = model_run_results.models.get(model_name) #
    selected_features = model_run_results.selected_features #
    if model is None: raise gr.Error(f"Model '{model_name}' not found.") #
    
    smi_file, output_csv = 'predict.smi', 'predict_fp.csv' #
    try: #
        progress(0, desc="Reading & processing new molecules..."); yield "Reading uploaded file...", None, None #
        df_new = pd.read_csv(uploaded_file.name) #
        if 'canonical_smiles' not in df_new.columns: raise gr.Error("CSV must contain a 'canonical_smiles' column.") #
        df_new = df_new.reset_index().rename(columns={'index': 'mol_id'}) #
        
        padel_input = pd.DataFrame({'smiles': df_new['canonical_smiles'], 'name': df_new['mol_id']}) #
        padel_input.to_csv(smi_file, sep='\t', index=False, header=False) #
        if os.path.exists(output_csv): os.remove(output_csv) #
        
        progress(0.3, desc="Calculating fingerprints..."); yield "Calculating fingerprints for new molecules...", None, None #
        padeldescriptor(mol_dir=smi_file, d_file=output_csv, descriptortypes=fp_config.get(fingerprint_type), detectaromaticity=True, standardizenitro=True, threads=-1, removesalt=True, log=False, fingerprints=True) #
        if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0: raise gr.Error("PaDEL calculation failed for the uploaded molecules.") #
        
        progress(0.7, desc="Aligning features and predicting..."); yield "Aligning features and predicting...", None, None #
        df_fp = pd.read_csv(output_csv).rename(columns={'Name': 'mol_id'}) #
        
        X_new = df_fp.set_index('mol_id') #
        X_new_aligned = X_new.reindex(columns=selected_features, fill_value=0)[selected_features] #
        
        predictions = model.predict(X_new_aligned) #
        
        results_subset = pd.DataFrame({'mol_id': X_new_aligned.index, 'predicted_pIC50': predictions}) #
        df_results = pd.merge(df_new, results_subset, on='mol_id', how='left') #

        progress(0.9, desc="Generating visualization..."); yield "Generating visualization...", None, None #
        
        df_grid_view = df_results.dropna(subset=['predicted_pIC50']).copy() #
        mols_html = "<h3>No molecules with successful predictions to display.</h3>" #
        if not df_grid_view.empty: #
            df_grid_view.rename(columns={"predicted_pIC50": "Predicted pIC50"}, inplace=True) #
            mols_html = mols2grid.display( #
                df_grid_view, #
                smiles_col='canonical_smiles', #
                subset=['img', 'Predicted pIC50'], #
                transform={"Predicted pIC50": lambda x: f"{x:.2f}"} #
            )._repr_html_() #
        
        progress(1, desc="Complete!"); yield "βœ… Prediction complete.", df_results[['canonical_smiles', 'predicted_pIC50']], mols_html #
    finally: #
        if os.path.exists(smi_file): os.remove(smi_file) #
        if os.path.exists(output_csv): os.remove(output_csv) #

# ==============================================================================
# === GRADIO INTERFACE ===
# ==============================================================================
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky"), title="Comprehensive Drug Discovery Workflow") as demo: #
    gr.Markdown("# πŸ§ͺ Comprehensive Drug Discovery Workflow") #
    gr.Markdown("A 3-step application to fetch, analyze, and model chemical bioactivity data.") #
    app_state = gr.State({}) #
    with gr.Tabs(): #
        with gr.Tab("Step 1: Data Collection & EDA"): #
            gr.Markdown("## Fetch Bioactivity Data from ChEMBL and Perform Exploratory Analysis") #
            with gr.Row(): #
                query_input = gr.Textbox(label="Target Query", placeholder="e.g., acetylcholinesterase, BRAF kinase", scale=3) #
                fetch_btn = gr.Button("Fetch Targets", variant="primary", scale=1) #
            status_step1_fetch = gr.Textbox(label="Status", interactive=False) #
            target_id_table = gr.Dataframe(label="Available Targets", interactive=False, headers=["target_chembl_id", "pref_name", "organism"]) #
            with gr.Row(): #
                selected_target_dropdown = gr.Dropdown(label="Select Target ChEMBL ID", interactive=True, scale=3) #
                process_btn = gr.Button("Process Data & Run EDA", variant="primary", scale=1, interactive=False) #
            status_step1_process = gr.Textbox(label="Status", interactive=False) #
            gr.Markdown("### Filtered Data & Analysis") #
            bioactivity_class_selector = gr.CheckboxGroup(["active", "inactive", "intermediate"], label="Filter by Bioactivity Class", value=["active", "inactive", "intermediate"]) #
            df_output_s1 = gr.Dataframe(label="Cleaned Bioactivity Data") #
            with gr.Tabs(): #
                with gr.Tab("Chemical Space Overview"): #
                    with gr.Row(): #
                        freq_plot_output = gr.Plot(label="Frequency of Bioactivity Classes") #
                        scatter_plot_output = gr.Plot(label="Scatter Plot: MW vs LogP") #
                with gr.Tab("pIC50 Analysis"): #
                    with gr.Row(): #
                        pic50_plot_output = gr.Plot(label="pIC50 Box Plot") #
                        pic50_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for pIC50") #
                with gr.Tab("Molecular Weight Analysis"): #
                    with gr.Row(): #
                        mw_plot_output = gr.Plot(label="MW Box Plot") #
                        mw_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for MW") #
                with gr.Tab("LogP Analysis"): #
                    with gr.Row(): #
                        logp_plot_output = gr.Plot(label="LogP Box Plot") #
                        logp_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for LogP") #
                with gr.Tab("H-Bond Donor/Acceptor Analysis"): #
                    with gr.Row(): #
                        hdonors_plot_output = gr.Plot(label="H-Donors Box Plot") #
                        hacceptors_plot_output = gr.Plot(label="H-Acceptors Box Plot") #
                    with gr.Row(): #
                        hdonors_stats_output = gr.Dataframe(label="Stats for H-Donors") #
                        hacceptors_stats_output = gr.Dataframe(label="Stats for H-Acceptors") #
        with gr.Tab("Step 2: Feature Engineering"): #
            gr.Markdown("## Calculate Molecular Fingerprints using PaDEL") #
            with gr.Row(): #
                fingerprint_dropdown = gr.Dropdown(choices=FP_list, value='PubChem' if 'PubChem' in FP_list else None, label="Select Fingerprint Method", scale=3) #
                calculate_fp_btn = gr.Button("Calculate Fingerprints", variant="primary", scale=1) #
            status_step2 = gr.Textbox(label="Status", interactive=False) #
            output_df_s2 = gr.Dataframe(label="Final Processed Data", wrap=True) #
            download_s2 = gr.DownloadButton("Download Feature Data (CSV)", variant="secondary", visible=False) #
            mols_grid_s2 = gr.HTML(label="Interactive Molecule Viewer") #
        with gr.Tab("Step 3: Model Training & Prediction"): #
            gr.Markdown("## Train Regression Models and Predict pIC50") #
            with gr.Tabs(): #
                with gr.Tab("Model Training & Evaluation"): #
                    train_models_btn = gr.Button("Train All Models", variant="primary") #
                    status_step3_train = gr.Textbox(label="Status", interactive=False) #
                    model_results_df = gr.DataFrame(label="Ranked Model Results", interactive=False) #
                    with gr.Row(): #
                        model_selector_s3 = gr.Dropdown(label="Select Model to Analyze", interactive=False) #
                        feature_count_s3 = gr.Number(label="Top Features to Show", value=7, minimum=3, maximum=20, step=1) #
                    with gr.Tabs(): #
                        with gr.Tab("Validation Plots"): validation_plot_s3 = gr.Plot(label="Model Validation Plots") #
                        with gr.Tab("Feature Importance"): feature_plot_s3 = gr.Plot(label="Top Feature Importances") #
                with gr.Tab("Predict on New Data"): #
                    gr.Markdown("Upload a CSV with a `canonical_smiles` column to predict pIC50.") #
                    with gr.Row(): #
                        upload_predict_file = gr.File(label="Upload CSV for Prediction", file_types=[".csv"]) #
                        predict_btn_s3 = gr.Button("Run Prediction", variant="primary") #
                    status_step3_predict = gr.Textbox(label="Status", interactive=False) #
                    prediction_results_df = gr.DataFrame(label="Prediction Results") #
                    prediction_mols_grid = gr.HTML(label="Interactive Molecular Grid of Predictions") #

    # --- EVENT HANDLERS ---
    def enable_process_button(target_id): return gr.update(interactive=bool(target_id)) #
    def process_and_analyze_wrapper(target_id, selected_classes, current_state, progress=gr.Progress()): #
        if not target_id: raise gr.Error("Please select a target ChEMBL ID first.") #
        progress(0, desc="Fetching data..."); raw_data, msg1 = get_bioactivity_data(target_id); yield {status_step1_process: gr.update(value=msg1)} #
        progress(0.3, desc="Cleaning data..."); processed_data, msg2 = clean_and_process_data(raw_data); yield {df_output_s1: processed_data, status_step1_process: gr.update(value=msg2)} #
        current_state['cleaned_data'] = processed_data #
        progress(0.6, desc="Running EDA..."); plots_and_stats = run_eda_analysis(processed_data, selected_classes); msg3 = plots_and_stats[-1] #
        progress(1, desc="Done!") #
        filtered_data = processed_data[processed_data.bioactivity_class.isin(selected_classes)] if not processed_data.empty else pd.DataFrame() #
        outputs = [filtered_data] + list(plots_and_stats[:-1]) + [msg3, current_state] #
        output_components = [df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process, app_state] #
        yield dict(zip(output_components, outputs)) #
    def update_analysis_on_filter_change(selected_classes, current_state): #
        cleaned_data = current_state.get('cleaned_data') #
        if cleaned_data is None or cleaned_data.empty: return (pd.DataFrame(),) + (None,) * 11 + ("No data available.",) #
        plots_and_stats = run_eda_analysis(cleaned_data, selected_classes); msg = plots_and_stats[-1] #
        filtered_data = cleaned_data[cleaned_data.bioactivity_class.isin(selected_classes)] #
        return (filtered_data,) + plots_and_stats[:-1] + (msg,) #
    def handle_model_training(current_state, progress=gr.Progress(track_tqdm=True)): #
        fingerprint_data = current_state.get('fingerprint_data') #
        if fingerprint_data is None or fingerprint_data.empty: raise gr.Error("No feature data. Please complete Step 2.") #
        for status_msg, model_results, model_choices_update in run_regression_suite(fingerprint_data, progress=progress): #
            if model_results: current_state['model_results'] = model_results #
            yield status_msg, model_results.dataframe if model_results else None, model_choices_update, current_state #
    def save_dataframe_as_csv(df): #
        if df is None or df.empty: return None #
        filename = "feature_engineered_data.csv"; df.to_csv(filename, index=False); return gr.File(value=filename, visible=True) #
    def update_analysis_plots(model_name, feature_count, current_state): #
        model_results = current_state.get('model_results') #
        if not model_results or not model_name: return None, None #
        plotter = model_results.plotter; validation_fig = plotter.plot_validation(model_name); feature_fig = plotter.plot_feature_importance(model_name, int(feature_count)); plt.close('all'); return validation_fig, feature_fig #

    fetch_btn.click(fn=get_target_chembl_id, inputs=query_input, outputs=[target_id_table, selected_target_dropdown, status_step1_fetch], show_progress="minimal") #
    selected_target_dropdown.change(fn=enable_process_button, inputs=selected_target_dropdown, outputs=process_btn, show_progress="hidden") #
    process_btn.click(fn=process_and_analyze_wrapper, inputs=[selected_target_dropdown, bioactivity_class_selector, app_state], outputs=[df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process, app_state]) #
    bioactivity_class_selector.change(fn=update_analysis_on_filter_change, inputs=[bioactivity_class_selector, app_state], outputs=[df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process], show_progress="minimal") #
    calculate_fp_btn.click(fn=calculate_fingerprints, inputs=[app_state, fingerprint_dropdown], outputs=[status_step2, output_df_s2, download_s2, mols_grid_s2, app_state]) #
    
    @download_s2.click(inputs=app_state, outputs=download_s2, show_progress="hidden") #
    def download_handler(current_state): #
        df_to_download = current_state.get('fingerprint_data') #
        return save_dataframe_as_csv(df_to_download) #
    
    train_models_btn.click(fn=handle_model_training, inputs=[app_state], outputs=[status_step3_train, model_results_df, model_selector_s3, app_state]) #
    for listener in [model_selector_s3.change, feature_count_s3.change]: listener(fn=update_analysis_plots, inputs=[model_selector_s3, feature_count_s3, app_state], outputs=[validation_plot_s3, feature_plot_s3], show_progress="minimal") #
    predict_btn_s3.click(fn=predict_on_upload, inputs=[upload_predict_file, model_selector_s3, app_state], outputs=[status_step3_predict, prediction_results_df, prediction_mols_grid]) #

if __name__ == "__main__": #
    demo.launch(debug=True) #