Spaces:
Sleeping
Sleeping
File size: 32,954 Bytes
561a150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# --- IMPORTS ---
# Core and Data Handling
import gradio as gr #
import pandas as pd #
import numpy as np #
import os #
import glob #
import time #
import warnings #
# Chemistry and Cheminformatics
from rdkit import Chem #
from rdkit.Chem import Descriptors, Lipinski #
from chembl_webresource_client.new_client import new_client #
from padelpy import padeldescriptor #
import mols2grid #
# Plotting and Visualization
import matplotlib.pyplot as plt #
import seaborn as sns #
from scipy import stats #
from scipy.stats import mannwhitneyu #
# Machine Learning Models and Metrics
from sklearn.model_selection import train_test_split #
from sklearn.feature_selection import VarianceThreshold #
from sklearn.linear_model import ( #
LinearRegression, Ridge, Lasso, ElasticNet, BayesianRidge, #
HuberRegressor, PassiveAggressiveRegressor, OrthogonalMatchingPursuit, #
LassoLars #
)
from sklearn.tree import DecisionTreeRegressor #
from sklearn.ensemble import ( #
RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor, #
AdaBoostRegressor #
)
from sklearn.neighbors import KNeighborsRegressor #
from sklearn.dummy import DummyRegressor #
from sklearn.metrics import ( #
mean_absolute_error, mean_squared_error, r2_score #
)
# A placeholder class to store all results from a modeling run
class ModelRunResult: #
def __init__(self, dataframe, plotter, models, selected_features): #
self.dataframe = dataframe #
self.plotter = plotter #
self.models = models #
self.selected_features = selected_features #
# Optional Advanced Models
try: #
import xgboost as xgb #
import lightgbm as lgb #
import catboost as cb #
_has_extra_libs = True #
except ImportError: #
_has_extra_libs = False #
warnings.warn("Optional libraries (xgboost, lightgbm, catboost) not found. Some models will be unavailable.") #
# --- GLOBAL CONFIGURATION & SETUP ---
warnings.filterwarnings("ignore") #
sns.set_theme(style='whitegrid') #
# --- FINGERPRINT CONFIGURATION ---
DESCRIPTOR_DIR = "padel_descriptors"
# Check if the descriptor directory exists and contains files
if not os.path.isdir(DESCRIPTOR_DIR):
warnings.warn(
f"The descriptor directory '{DESCRIPTOR_DIR}' was not found. "
"Fingerprint calculation will be disabled. Please create this directory and upload your .xml files."
)
xml_files = []
else:
xml_files = sorted(glob.glob(os.path.join(DESCRIPTOR_DIR, '*.xml')))
if not xml_files:
warnings.warn(
f"No descriptor .xml files found in the '{DESCRIPTOR_DIR}' directory. "
"Fingerprint calculation will not be possible."
)
# The key is the filename without extension; the value is the full path to the file
fp_config = {os.path.splitext(os.path.basename(file))[0]: file for file in xml_files}
FP_list = sorted(list(fp_config.keys()))
# ==============================================================================
# === STEP 1: CORE DATA COLLECTION & EDA FUNCTIONS ===
# ==============================================================================
def get_target_chembl_id(query): #
try: #
target = new_client.target #
res = target.search(query) #
if not res: #
return pd.DataFrame(), gr.Dropdown(choices=[], value=None), "No targets found for your query." #
df = pd.DataFrame(res) #
return df[["target_chembl_id", "pref_name", "organism"]], gr.Dropdown(choices=df["target_chembl_id"].tolist()), f"Found {len(df)} targets." #
except Exception as e: #
raise gr.Error(f"ChEMBL search failed: {e}") #
def get_bioactivity_data(target_id): #
try: #
activity = new_client.activity #
res = activity.filter(target_chembl_id=target_id).filter(standard_type="IC50") #
if not res: #
return pd.DataFrame(), "No IC50 bioactivity data found for this target." #
df = pd.DataFrame(res) #
return df, f"Fetched {len(df)} data points." #
except Exception as e: #
raise gr.Error(f"Failed to fetch bioactivity data: {e}") #
def pIC50_calc(input_df): #
df_copy = input_df.copy() #
df_copy['standard_value'] = pd.to_numeric(df_copy['standard_value'], errors='coerce') #
df_copy.dropna(subset=['standard_value'], inplace=True) #
df_copy['standard_value_norm'] = df_copy['standard_value'].apply(lambda x: min(x, 100000000)) #
pIC50_values = [] #
for i in df_copy['standard_value_norm']: #
if pd.notna(i) and i > 0: #
molar = i * (10**-9) #
pIC50_values.append(-np.log10(molar)) #
else: #
pIC50_values.append(np.nan) #
df_copy['pIC50'] = pIC50_values #
df_copy['bioactivity_class'] = df_copy['standard_value_norm'].apply( #
lambda x: "inactive" if pd.notna(x) and x >= 10000 else ("active" if pd.notna(x) and x <= 1000 else "intermediate") #
)
return df_copy.drop(columns=['standard_value', 'standard_value_norm']) #
def lipinski_descriptors(smiles_series): #
moldata, valid_smiles = [], [] #
for elem in smiles_series: #
if elem and isinstance(elem, str): #
mol = Chem.MolFromSmiles(elem) #
if mol: #
moldata.append(mol) #
valid_smiles.append(elem) #
descriptor_rows = [] #
for mol in moldata: #
row = [Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Lipinski.NumHDonors(mol), Lipinski.NumHAcceptors(mol)] #
descriptor_rows.append(row) #
columnNames = ["MW", "LogP", "NumHDonors", "NumHAcceptors"] #
if not descriptor_rows: return pd.DataFrame(columns=columnNames), [] #
return pd.DataFrame(data=np.array(descriptor_rows), columns=columnNames), valid_smiles #
def clean_and_process_data(df): #
if df is None or df.empty: raise gr.Error("No data to process. Please fetch data first.") #
if "canonical_smiles" not in df.columns or df["canonical_smiles"].isnull().all(): #
try: #
df["canonical_smiles"] = [c.get("molecule_structures", {}).get("canonical_smiles") for c in new_client.molecule.get(list(df["molecule_chembl_id"]))] #
except Exception as e: #
raise gr.Error(f"Could not fetch SMILES from ChEMBL: {e}") #
df = df[df.standard_value.notna()] #
df = df[df.canonical_smiles.notna()] #
df.drop_duplicates(['canonical_smiles'], inplace=True) #
df["standard_value"] = pd.to_numeric(df["standard_value"], errors='coerce') #
df.dropna(subset=['standard_value'], inplace=True) #
df_processed = pIC50_calc(df) #
df_processed = df_processed[df_processed.pIC50.notna()] #
if df_processed.empty: return pd.DataFrame(), "No compounds remaining after pIC50 calculation." #
df_lipinski, valid_smiles = lipinski_descriptors(df_processed['canonical_smiles']) #
if not valid_smiles: return pd.DataFrame(), "No valid SMILES could be processed for Lipinski descriptors." #
df_processed = df_processed[df_processed['canonical_smiles'].isin(valid_smiles)].reset_index(drop=True) #
df_lipinski = df_lipinski.reset_index(drop=True) #
df_final = pd.concat([df_processed, df_lipinski], axis=1) #
return df_final, f"Processing complete. {len(df_final)} compounds remain after cleaning." #
def run_eda_analysis(df, selected_classes): #
if df is None or df.empty: raise gr.Error("No data available for analysis.") #
df_filtered = df[df.bioactivity_class.isin(selected_classes)].copy() #
if df_filtered.empty: return (None, None, None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), None, pd.DataFrame(), "No data for selected classes.") #
plots = [create_frequency_plot(df_filtered), create_scatter_plot(df_filtered)] #
stats_dfs = [] #
for desc in ['pIC50', 'MW', 'LogP', 'NumHDonors', 'NumHAcceptors']: #
plots.append(create_boxplot(df_filtered, desc)) #
stats_dfs.append(mannwhitney_test(df_filtered, desc)) #
plt.close('all') #
return (plots[0], plots[1], plots[2], stats_dfs[0], plots[3], stats_dfs[1], plots[4], stats_dfs[2], plots[5], stats_dfs[3], plots[6], stats_dfs[4], f"EDA complete for {len(df_filtered)} compounds.") #
def create_frequency_plot(df): #
plt.figure(figsize=(5.5, 5.5)); sns.barplot(x=df['bioactivity_class'].value_counts().index, y=df['bioactivity_class'].value_counts().values, palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}); plt.xlabel('Bioactivity Class', fontsize=12); plt.ylabel('Frequency', fontsize=12); plt.title('Frequency of Bioactivity Classes', fontsize=14); return plt.gcf() #
def create_scatter_plot(df): #
plt.figure(figsize=(5.5, 5.5)); sns.scatterplot(data=df, x='MW', y='LogP', hue='bioactivity_class', size='pIC50', palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}, sizes=(20, 200), alpha=0.7); plt.xlabel('Molecular Weight (MW)', fontsize=12); plt.ylabel('LogP', fontsize=12); plt.title('Chemical Space: MW vs. LogP', fontsize=14); plt.legend(title='Bioactivity Class'); return plt.gcf() #
def create_boxplot(df, descriptor): #
plt.figure(figsize=(5.5, 5.5)); sns.boxplot(x='bioactivity_class', y=descriptor, data=df, palette={'active': '#1f77b4', 'inactive': '#ff7f0e', 'intermediate': '#2ca02c'}); plt.xlabel('Bioactivity Class', fontsize=12); plt.ylabel(descriptor, fontsize=12); plt.title(f'{descriptor} by Bioactivity Class', fontsize=14); return plt.gcf() #
def mannwhitney_test(df, descriptor): #
results = [] #
for c1, c2 in [('active', 'inactive'), ('active', 'intermediate'), ('inactive', 'intermediate')]: #
if c1 in df['bioactivity_class'].unique() and c2 in df['bioactivity_class'].unique(): #
d1, d2 = df[df.bioactivity_class == c1][descriptor].dropna(), df[df.bioactivity_class == c2][descriptor].dropna() #
if not d1.empty and not d2.empty: #
stat, p = mannwhitneyu(d1, d2) #
results.append({'Comparison': f'{c1.title()} vs {c2.title()}', 'Statistics': stat, 'p-value': p, 'Interpretation': 'Different distribution (p < 0.05)' if p <= 0.05 else 'Same distribution (p > 0.05)'}) #
return pd.DataFrame(results) #
# ==============================================================================
# === STEP 2: FEATURE ENGINEERING FUNCTIONS ===
# ==============================================================================
def calculate_fingerprints(current_state, fingerprint_type, progress=gr.Progress()): #
input_df = current_state.get('cleaned_data') #
if input_df is None or input_df.empty: raise gr.Error("No cleaned data found. Please complete Step 1.") #
if not fingerprint_type: raise gr.Error("Please select a fingerprint type.") #
progress(0, desc="Starting..."); yield f"π§ͺ Starting fingerprint calculation...", None, gr.update(visible=False), None, current_state #
try: #
smi_file, output_csv = 'molecule.smi', 'fingerprints.csv' #
input_df[['canonical_smiles', 'canonical_smiles']].to_csv(smi_file, sep='\t', index=False, header=False) #
if os.path.exists(output_csv): os.remove(output_csv) #
descriptortypes = fp_config.get(fingerprint_type) #
if not descriptortypes: raise gr.Error(f"Descriptor XML for '{fingerprint_type}' not found.") #
progress(0.3, desc="βοΈ Running PaDEL..."); yield f"βοΈ Running PaDEL...", None, gr.update(visible=False), None, current_state #
padeldescriptor(mol_dir=smi_file, d_file=output_csv, descriptortypes=descriptortypes, detectaromaticity=True, standardizenitro=True, standardizetautomers=True, threads=-1, removesalt=True, log=False, fingerprints=True) #
if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0: #
raise gr.Error("PaDEL failed to produce an output file. Check molecule validity.") #
progress(0.7, desc="π Processing results..."); yield "π Processing results...", None, gr.update(visible=False), None, current_state #
df_X = pd.read_csv(output_csv).rename(columns={'Name': 'canonical_smiles'}) #
final_df = pd.merge(input_df[['canonical_smiles', 'pIC50']], df_X, on='canonical_smiles', how='inner') #
current_state['fingerprint_data'] = final_df; current_state['fingerprint_type'] = fingerprint_type #
progress(0.9, desc="πΌοΈ Generating molecule grid...") #
mols_html = mols2grid.display(final_df, smiles_col='canonical_smiles', subset=['img', 'pIC50'], rename={"pIC50": "pIC50"}, transform={"pIC50": lambda x: f"{x:.2f}"})._repr_html_() #
success_msg = f"β
Success! Generated {len(df_X.columns) -1} descriptors for {len(final_df)} molecules." #
progress(1, desc="Completed!"); yield success_msg, final_df, gr.update(visible=True), gr.update(value=mols_html, visible=True), current_state #
except Exception as e: raise gr.Error(f"Calculation failed: {e}") #
finally: #
if os.path.exists('molecule.smi'): os.remove('molecule.smi') #
if os.path.exists('fingerprints.csv'): os.remove('fingerprints.csv') #
# ==============================================================================
# === STEP 3: MODEL TRAINING & PREDICTION FUNCTIONS ===
# ==============================================================================
class ModelPlotter: #
def __init__(self, models: dict, X_test: pd.DataFrame, y_test: pd.Series): #
self._models, self._X_test, self._y_test = models, X_test, y_test #
def plot_validation(self, model_name: str): #
if model_name not in self._models: raise ValueError(f"Model '{model_name}' not found.") #
model, y_pred = self._models[model_name], self._models[model_name].predict(self._X_test) #
residuals = self._y_test - y_pred #
fig, axes = plt.subplots(2, 2, figsize=(12, 10)); fig.suptitle(f'Model Validation Plots for {model_name}', fontsize=16, y=1.02) #
sns.scatterplot(x=self._y_test, y=y_pred, ax=axes[0, 0], alpha=0.6); axes[0, 0].set_title('Actual vs. Predicted'); axes[0, 0].set_xlabel('Actual pIC50'); axes[0, 0].set_ylabel('Predicted pIC50'); lims = [min(self._y_test.min(), y_pred.min()), max(self._y_test.max(), y_pred.max())]; axes[0, 0].plot(lims, lims, 'r--', alpha=0.75, zorder=0) #
sns.scatterplot(x=y_pred, y=residuals, ax=axes[0, 1], alpha=0.6); axes[0, 1].axhline(y=0, color='r', linestyle='--'); axes[0, 1].set_title('Residuals vs. Predicted'); axes[0, 1].set_xlabel('Predicted pIC50'); axes[0, 1].set_ylabel('Residuals') #
sns.histplot(residuals, kde=True, ax=axes[1, 0]); axes[1, 0].set_title('Distribution of Residuals') #
stats.probplot(residuals, dist="norm", plot=axes[1, 1]); axes[1, 1].set_title('Normal Q-Q Plot') #
plt.tight_layout(); return fig #
def plot_feature_importance(self, model_name: str, top_n: int = 7): #
if model_name not in self._models: raise ValueError(f"Model '{model_name}' not found.") #
model = self._models[model_name] #
if hasattr(model, 'feature_importances_'): importances = model.feature_importances_ #
elif hasattr(model, 'coef_'): importances = np.abs(model.coef_) #
else: return None #
top_features = pd.DataFrame({'Feature': self._X_test.columns, 'Importance': importances}).sort_values(by='Importance', ascending=False).head(top_n) #
plt.figure(figsize=(10, top_n * 0.5)); sns.barplot(x='Importance', y='Feature', data=top_features, palette='viridis', orient='h'); plt.title(f'Top {top_n} Features for {model_name}'); plt.tight_layout(); return plt.gcf() #
def run_regression_suite(df: pd.DataFrame, progress=gr.Progress()): #
progress(0, desc="Splitting data..."); yield "Splitting data (80/20 train/test split)...", None, None #
X = df.drop(columns=['pIC50', 'canonical_smiles'], errors='ignore') #
y = df['pIC50'] #
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) #
progress(0.1, desc="Selecting features..."); yield "Performing feature selection (removing low variance)...", None, None #
selector = VarianceThreshold(threshold=0.1) #
X_train = pd.DataFrame(selector.fit_transform(X_train), columns=X_train.columns[selector.get_support()], index=X_train.index) #
X_test = pd.DataFrame(selector.transform(X_test), columns=X_test.columns[selector.get_support()], index=X_test.index) #
selected_features = X_train.columns.tolist() #
model_defs = [('Linear Regression', LinearRegression()), ('Ridge', Ridge(random_state=42)), ('Lasso', Lasso(random_state=42)), ('Random Forest', RandomForestRegressor(random_state=42, n_jobs=-1)), ('Gradient Boosting', GradientBoostingRegressor(random_state=42))] #
if _has_extra_libs: model_defs.extend([('XGBoost', xgb.XGBRegressor(random_state=42, n_jobs=-1, verbosity=0)), ('LightGBM', lgb.LGBMRegressor(random_state=42, n_jobs=-1, verbosity=-1)), ('CatBoost', cb.CatBoostRegressor(random_state=42, verbose=0))]) #
results_list, trained_models = [], {} #
for i, (name, model) in enumerate(model_defs): #
progress(0.2 + (i / len(model_defs)) * 0.8, desc=f"Training {name}...") #
yield f"Training {i+1}/{len(model_defs)}: {name}...", None, None #
start_time = time.time(); model.fit(X_train, y_train); y_pred = model.predict(X_test) #
results_list.append({'Model': name, 'RΒ²': r2_score(y_test, y_pred), 'MAE': mean_absolute_error(y_test, y_pred), 'RMSE': np.sqrt(mean_squared_error(y_test, y_pred)), 'Time (s)': f"{time.time() - start_time:.2f}"}) #
trained_models[name] = model #
results_df = pd.DataFrame(results_list).sort_values(by='RΒ²', ascending=False).reset_index(drop=True) #
plotter = ModelPlotter(trained_models, X_test, y_test) #
model_run_results = ModelRunResult(results_df, plotter, trained_models, selected_features) #
model_choices = results_df['Model'].tolist() #
yield "β
Model training & evaluation complete.", model_run_results, gr.Dropdown(choices=model_choices, interactive=True) #
def predict_on_upload(uploaded_file, model_name, current_state, progress=gr.Progress()): #
if not uploaded_file: raise gr.Error("Please upload a file.") #
if not model_name: raise gr.Error("Please select a trained model.") #
model_run_results = current_state.get('model_results') #
fingerprint_type = current_state.get('fingerprint_type') #
if not model_run_results or not fingerprint_type: raise gr.Error("Please run Steps 2 and 3 first.") #
model = model_run_results.models.get(model_name) #
selected_features = model_run_results.selected_features #
if model is None: raise gr.Error(f"Model '{model_name}' not found.") #
smi_file, output_csv = 'predict.smi', 'predict_fp.csv' #
try: #
progress(0, desc="Reading & processing new molecules..."); yield "Reading uploaded file...", None, None #
df_new = pd.read_csv(uploaded_file.name) #
if 'canonical_smiles' not in df_new.columns: raise gr.Error("CSV must contain a 'canonical_smiles' column.") #
df_new = df_new.reset_index().rename(columns={'index': 'mol_id'}) #
padel_input = pd.DataFrame({'smiles': df_new['canonical_smiles'], 'name': df_new['mol_id']}) #
padel_input.to_csv(smi_file, sep='\t', index=False, header=False) #
if os.path.exists(output_csv): os.remove(output_csv) #
progress(0.3, desc="Calculating fingerprints..."); yield "Calculating fingerprints for new molecules...", None, None #
padeldescriptor(mol_dir=smi_file, d_file=output_csv, descriptortypes=fp_config.get(fingerprint_type), detectaromaticity=True, standardizenitro=True, threads=-1, removesalt=True, log=False, fingerprints=True) #
if not os.path.exists(output_csv) or os.path.getsize(output_csv) == 0: raise gr.Error("PaDEL calculation failed for the uploaded molecules.") #
progress(0.7, desc="Aligning features and predicting..."); yield "Aligning features and predicting...", None, None #
df_fp = pd.read_csv(output_csv).rename(columns={'Name': 'mol_id'}) #
X_new = df_fp.set_index('mol_id') #
X_new_aligned = X_new.reindex(columns=selected_features, fill_value=0)[selected_features] #
predictions = model.predict(X_new_aligned) #
results_subset = pd.DataFrame({'mol_id': X_new_aligned.index, 'predicted_pIC50': predictions}) #
df_results = pd.merge(df_new, results_subset, on='mol_id', how='left') #
progress(0.9, desc="Generating visualization..."); yield "Generating visualization...", None, None #
df_grid_view = df_results.dropna(subset=['predicted_pIC50']).copy() #
mols_html = "<h3>No molecules with successful predictions to display.</h3>" #
if not df_grid_view.empty: #
df_grid_view.rename(columns={"predicted_pIC50": "Predicted pIC50"}, inplace=True) #
mols_html = mols2grid.display( #
df_grid_view, #
smiles_col='canonical_smiles', #
subset=['img', 'Predicted pIC50'], #
transform={"Predicted pIC50": lambda x: f"{x:.2f}"} #
)._repr_html_() #
progress(1, desc="Complete!"); yield "β
Prediction complete.", df_results[['canonical_smiles', 'predicted_pIC50']], mols_html #
finally: #
if os.path.exists(smi_file): os.remove(smi_file) #
if os.path.exists(output_csv): os.remove(output_csv) #
# ==============================================================================
# === GRADIO INTERFACE ===
# ==============================================================================
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky"), title="Comprehensive Drug Discovery Workflow") as demo: #
gr.Markdown("# π§ͺ Comprehensive Drug Discovery Workflow") #
gr.Markdown("A 3-step application to fetch, analyze, and model chemical bioactivity data.") #
app_state = gr.State({}) #
with gr.Tabs(): #
with gr.Tab("Step 1: Data Collection & EDA"): #
gr.Markdown("## Fetch Bioactivity Data from ChEMBL and Perform Exploratory Analysis") #
with gr.Row(): #
query_input = gr.Textbox(label="Target Query", placeholder="e.g., acetylcholinesterase, BRAF kinase", scale=3) #
fetch_btn = gr.Button("Fetch Targets", variant="primary", scale=1) #
status_step1_fetch = gr.Textbox(label="Status", interactive=False) #
target_id_table = gr.Dataframe(label="Available Targets", interactive=False, headers=["target_chembl_id", "pref_name", "organism"]) #
with gr.Row(): #
selected_target_dropdown = gr.Dropdown(label="Select Target ChEMBL ID", interactive=True, scale=3) #
process_btn = gr.Button("Process Data & Run EDA", variant="primary", scale=1, interactive=False) #
status_step1_process = gr.Textbox(label="Status", interactive=False) #
gr.Markdown("### Filtered Data & Analysis") #
bioactivity_class_selector = gr.CheckboxGroup(["active", "inactive", "intermediate"], label="Filter by Bioactivity Class", value=["active", "inactive", "intermediate"]) #
df_output_s1 = gr.Dataframe(label="Cleaned Bioactivity Data") #
with gr.Tabs(): #
with gr.Tab("Chemical Space Overview"): #
with gr.Row(): #
freq_plot_output = gr.Plot(label="Frequency of Bioactivity Classes") #
scatter_plot_output = gr.Plot(label="Scatter Plot: MW vs LogP") #
with gr.Tab("pIC50 Analysis"): #
with gr.Row(): #
pic50_plot_output = gr.Plot(label="pIC50 Box Plot") #
pic50_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for pIC50") #
with gr.Tab("Molecular Weight Analysis"): #
with gr.Row(): #
mw_plot_output = gr.Plot(label="MW Box Plot") #
mw_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for MW") #
with gr.Tab("LogP Analysis"): #
with gr.Row(): #
logp_plot_output = gr.Plot(label="LogP Box Plot") #
logp_stats_output = gr.Dataframe(label="Mann-Whitney U Test Results for LogP") #
with gr.Tab("H-Bond Donor/Acceptor Analysis"): #
with gr.Row(): #
hdonors_plot_output = gr.Plot(label="H-Donors Box Plot") #
hacceptors_plot_output = gr.Plot(label="H-Acceptors Box Plot") #
with gr.Row(): #
hdonors_stats_output = gr.Dataframe(label="Stats for H-Donors") #
hacceptors_stats_output = gr.Dataframe(label="Stats for H-Acceptors") #
with gr.Tab("Step 2: Feature Engineering"): #
gr.Markdown("## Calculate Molecular Fingerprints using PaDEL") #
with gr.Row(): #
fingerprint_dropdown = gr.Dropdown(choices=FP_list, value='PubChem' if 'PubChem' in FP_list else None, label="Select Fingerprint Method", scale=3) #
calculate_fp_btn = gr.Button("Calculate Fingerprints", variant="primary", scale=1) #
status_step2 = gr.Textbox(label="Status", interactive=False) #
output_df_s2 = gr.Dataframe(label="Final Processed Data", wrap=True) #
download_s2 = gr.DownloadButton("Download Feature Data (CSV)", variant="secondary", visible=False) #
mols_grid_s2 = gr.HTML(label="Interactive Molecule Viewer") #
with gr.Tab("Step 3: Model Training & Prediction"): #
gr.Markdown("## Train Regression Models and Predict pIC50") #
with gr.Tabs(): #
with gr.Tab("Model Training & Evaluation"): #
train_models_btn = gr.Button("Train All Models", variant="primary") #
status_step3_train = gr.Textbox(label="Status", interactive=False) #
model_results_df = gr.DataFrame(label="Ranked Model Results", interactive=False) #
with gr.Row(): #
model_selector_s3 = gr.Dropdown(label="Select Model to Analyze", interactive=False) #
feature_count_s3 = gr.Number(label="Top Features to Show", value=7, minimum=3, maximum=20, step=1) #
with gr.Tabs(): #
with gr.Tab("Validation Plots"): validation_plot_s3 = gr.Plot(label="Model Validation Plots") #
with gr.Tab("Feature Importance"): feature_plot_s3 = gr.Plot(label="Top Feature Importances") #
with gr.Tab("Predict on New Data"): #
gr.Markdown("Upload a CSV with a `canonical_smiles` column to predict pIC50.") #
with gr.Row(): #
upload_predict_file = gr.File(label="Upload CSV for Prediction", file_types=[".csv"]) #
predict_btn_s3 = gr.Button("Run Prediction", variant="primary") #
status_step3_predict = gr.Textbox(label="Status", interactive=False) #
prediction_results_df = gr.DataFrame(label="Prediction Results") #
prediction_mols_grid = gr.HTML(label="Interactive Molecular Grid of Predictions") #
# --- EVENT HANDLERS ---
def enable_process_button(target_id): return gr.update(interactive=bool(target_id)) #
def process_and_analyze_wrapper(target_id, selected_classes, current_state, progress=gr.Progress()): #
if not target_id: raise gr.Error("Please select a target ChEMBL ID first.") #
progress(0, desc="Fetching data..."); raw_data, msg1 = get_bioactivity_data(target_id); yield {status_step1_process: gr.update(value=msg1)} #
progress(0.3, desc="Cleaning data..."); processed_data, msg2 = clean_and_process_data(raw_data); yield {df_output_s1: processed_data, status_step1_process: gr.update(value=msg2)} #
current_state['cleaned_data'] = processed_data #
progress(0.6, desc="Running EDA..."); plots_and_stats = run_eda_analysis(processed_data, selected_classes); msg3 = plots_and_stats[-1] #
progress(1, desc="Done!") #
filtered_data = processed_data[processed_data.bioactivity_class.isin(selected_classes)] if not processed_data.empty else pd.DataFrame() #
outputs = [filtered_data] + list(plots_and_stats[:-1]) + [msg3, current_state] #
output_components = [df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process, app_state] #
yield dict(zip(output_components, outputs)) #
def update_analysis_on_filter_change(selected_classes, current_state): #
cleaned_data = current_state.get('cleaned_data') #
if cleaned_data is None or cleaned_data.empty: return (pd.DataFrame(),) + (None,) * 11 + ("No data available.",) #
plots_and_stats = run_eda_analysis(cleaned_data, selected_classes); msg = plots_and_stats[-1] #
filtered_data = cleaned_data[cleaned_data.bioactivity_class.isin(selected_classes)] #
return (filtered_data,) + plots_and_stats[:-1] + (msg,) #
def handle_model_training(current_state, progress=gr.Progress(track_tqdm=True)): #
fingerprint_data = current_state.get('fingerprint_data') #
if fingerprint_data is None or fingerprint_data.empty: raise gr.Error("No feature data. Please complete Step 2.") #
for status_msg, model_results, model_choices_update in run_regression_suite(fingerprint_data, progress=progress): #
if model_results: current_state['model_results'] = model_results #
yield status_msg, model_results.dataframe if model_results else None, model_choices_update, current_state #
def save_dataframe_as_csv(df): #
if df is None or df.empty: return None #
filename = "feature_engineered_data.csv"; df.to_csv(filename, index=False); return gr.File(value=filename, visible=True) #
def update_analysis_plots(model_name, feature_count, current_state): #
model_results = current_state.get('model_results') #
if not model_results or not model_name: return None, None #
plotter = model_results.plotter; validation_fig = plotter.plot_validation(model_name); feature_fig = plotter.plot_feature_importance(model_name, int(feature_count)); plt.close('all'); return validation_fig, feature_fig #
fetch_btn.click(fn=get_target_chembl_id, inputs=query_input, outputs=[target_id_table, selected_target_dropdown, status_step1_fetch], show_progress="minimal") #
selected_target_dropdown.change(fn=enable_process_button, inputs=selected_target_dropdown, outputs=process_btn, show_progress="hidden") #
process_btn.click(fn=process_and_analyze_wrapper, inputs=[selected_target_dropdown, bioactivity_class_selector, app_state], outputs=[df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process, app_state]) #
bioactivity_class_selector.change(fn=update_analysis_on_filter_change, inputs=[bioactivity_class_selector, app_state], outputs=[df_output_s1, freq_plot_output, scatter_plot_output, pic50_plot_output, pic50_stats_output, mw_plot_output, mw_stats_output, logp_plot_output, logp_stats_output, hdonors_plot_output, hdonors_stats_output, hacceptors_plot_output, hacceptors_stats_output, status_step1_process], show_progress="minimal") #
calculate_fp_btn.click(fn=calculate_fingerprints, inputs=[app_state, fingerprint_dropdown], outputs=[status_step2, output_df_s2, download_s2, mols_grid_s2, app_state]) #
@download_s2.click(inputs=app_state, outputs=download_s2, show_progress="hidden") #
def download_handler(current_state): #
df_to_download = current_state.get('fingerprint_data') #
return save_dataframe_as_csv(df_to_download) #
train_models_btn.click(fn=handle_model_training, inputs=[app_state], outputs=[status_step3_train, model_results_df, model_selector_s3, app_state]) #
for listener in [model_selector_s3.change, feature_count_s3.change]: listener(fn=update_analysis_plots, inputs=[model_selector_s3, feature_count_s3, app_state], outputs=[validation_plot_s3, feature_plot_s3], show_progress="minimal") #
predict_btn_s3.click(fn=predict_on_upload, inputs=[upload_predict_file, model_selector_s3, app_state], outputs=[status_step3_predict, prediction_results_df, prediction_mols_grid]) #
if __name__ == "__main__": #
demo.launch(debug=True) # |