Zaki / app.py
alibidaran's picture
Update app.py
df4973d verified
import gradio as gr
import shutil
import os
#import ollama
import time
#import pandas as pd
global Modelfile # Declare Modelfile as a global variable
import os
from llama_cpp import Llama
os.environ["HF_HOME"] = "/app/.hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/.transformers_cache"
llm = Llama.from_pretrained(
repo_id="alibidaran/LLAMA3.2-Virtual_doctor_GGUF",
filename="unsloth.Q8_0.gguf",
)
#def Generate_report(history,model_flags):
# data={'steps':model_flags,
# 'turns':history}
# dataframe=pd.DataFrame.from_dict(data)
#dataframe.to_csv('Repports.csv',index=False)
def user(user_message,history):
return "", history+[{'role': 'user', 'content':user_message}]
def respond(history):
text=f"<s> ###Human: {history[-1]['content']} ###Asistant: "
response=llm(text,
max_tokens=512,
echo=True)
response=response['choices'][0]['text']
print(response)
history.append({'role':'assistant','content':""})
for character in response:
history[-1]['content']+=character
time.sleep(0.02)
yield history
with gr.Blocks() as demo:
gr.Markdown('# Welcome to Zaki platform')
with gr.Tab('Chat Interface'):
gr.HTML('<h1> Virtual Doctor </h2>')
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox()
btn=gr.Button('Send')
clear = gr.ClearButton([msg, chatbot])
btn.click(user, [msg, chatbot], [msg, chatbot],queue=False).then(respond,chatbot,chatbot)
clear.click(lambda:None,None,chatbot,queue=False)
if __name__=='__main__':
demo.launch(server_name="0.0.0.0", server_port=7860)