Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| class UstaSelfAttention(nn.Module): | |
| def __init__(self, embedding_dim, output_dim): | |
| super().__init__() | |
| self.embedding_dim = embedding_dim | |
| self.q_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
| self.k_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
| self.v_weights = nn.Linear(embedding_dim, output_dim, bias=False) | |
| def forward(self, x): | |
| q = self.q_weights(x) | |
| k = self.k_weights(x) | |
| v = self.v_weights(x) | |
| attention_scores = q @ k.T | |
| attention_weights = torch.softmax(attention_scores / k.shape[-1] ** 0.5, dim=1) | |
| return attention_weights @ v | |