Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| class GELU(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return 0.5 * x * ( | |
| 1 + torch.tanh( | |
| torch.sqrt(torch.tensor(2 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) | |
| ) | |
| ) | |
| class UstaMLP(nn.Module): | |
| def __init__(self, embedding_dim, hidden_dim): | |
| super().__init__() | |
| self.gate_proj = nn.Linear(embedding_dim, hidden_dim) | |
| self.up_proj = nn.Linear(embedding_dim, hidden_dim) | |
| self.down_proj = nn.Linear(hidden_dim, embedding_dim) | |
| self.gelu = GELU() | |
| def forward(self, x): | |
| """ gate = self.gate_proj(x) | |
| gate = F.gelu(gate, approximate="tanh") | |
| up = self.up_proj(x) | |
| fuse = gate * up | |
| outputs = self.down_proj(fuse) """ | |
| gate = self.gate_proj(x) | |
| gate = self.gelu(gate) | |
| up = self.up_proj(x) | |
| fuse = gate * up | |
| outputs = self.down_proj(fuse) | |
| return outputs | |