MangaLMM-Demo / app.py
alfredplpl's picture
Update app.py
6144f79 verified
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
shell=True,
)
import base64
from collections import Counter
from io import BytesIO
import re
from PIL import Image, ImageDraw
import gradio as gr
import spaces
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info, smart_resize
repo_id = "hal-utokyo/MangaLMM"
processor = AutoProcessor.from_pretrained("alfredplpl/MangaLMM")
# preload
device = "cuda"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map=device,
)
def pil2base64(image: Image.Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def bbox2d_to_quad(bbox_2d):
xmin, ymin, xmax, ymax = bbox_2d
return [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax]
def normalize_repeated_symbols(text):
text = re.sub(r'([~\~\〜\-\ー]+)', lambda m: m.group(1)[0], text)
text = re.sub(r'[~~〜]', '~', text)
text = re.sub(r'[-ー]', '-', text)
return text
def normalize_punctuation(text):
conversion_map = {
"!": "!",
"?": "?",
"…": "..."
}
text = re.sub("|".join(map(re.escape, conversion_map.keys())), lambda m: conversion_map[m.group()], text)
text = re.sub(r'[・・.]', '・', text)
return text
def restore_chouon(text):
# hirakana + katakana + kanji
# jp_range = r"ぁ-んァ-ン一-龯㐀-䶵" # \u3400-\u4DBF = r"㐀-䶵"
# Extended Unicode version: covers Hiragana, Katakana, and a wide range of Kanji (including Extension A)
jp_range = r"\u3040-\u309F\u30A0-\u30FF\u3400-\u4DBF\u4E00-\u9FFF"
pattern = rf"(?<=[{jp_range}])-(?=[{jp_range}])"
return re.sub(pattern, "ー", text)
def process_text(text: str) -> str:
text = re.sub(r"[\s\u3000]+", "", text)
text = normalize_repeated_symbols(text)
text = normalize_punctuation(text)
text = restore_chouon(text)
return text
def parse_ocr_text(text: str) -> list[list]:
if not text.strip():
return []
# handle escape
text = text.replace('\\"', '"')
# find \n\t{ ... } blocks
blocks = re.findall(r"\n\t\{.*?\}", text, re.DOTALL)
# extract OCR text and bounding box
ocrs = []
for block in blocks:
block = block.strip() # remove \n\t
bbox_match = re.search(r'"bbox_2d"\s*:\s*\[([^\]]+)\]', block, flags=re.DOTALL)
text_match = re.search(
r'"text_content"\s*:\s*"([^"]*)"', block, flags=re.DOTALL
)
if bbox_match and text_match:
try:
bbox_list = [int(x.strip()) for x in bbox_match.group(1).split(",")]
content = process_text(text_match.group(1))
quad = bbox2d_to_quad(bbox_list)
ocrs.append([content, quad])
except:
continue
# remove duplicates (sometimes the model generates the same text multiple times)
counter = Counter([ocr[0] for ocr in ocrs])
ocrs = [ocr for ocr in ocrs if counter[ocr[0]] < 10]
return ocrs
@spaces.GPU
def inference_fn(
image: Image.Image | None,
text: str | None,
# progress=gr.Progress(track_tqdm=True),
) -> tuple[str, str, Image.Image | None]:
if image is None:
gr.Warning("Please upload an image!", duration=10)
return "Please upload an image!", "Please upload an image!", None
if image.width * image.height > 2116800:
gr.Warning("The image size is too large! We resize it to smaller size.", duration=10)
resized_height, resized_width = smart_resize(
height=image.height,
width=image.width,
factor=processor.image_processor.patch_size * processor.image_processor.merge_size,
min_pixels=processor.image_processor.min_pixels,
max_pixels=processor.image_processor.max_pixels,
)
image = image.resize((resized_width, resized_height), resample=Image.Resampling.BICUBIC)
if text is None or text.strip() == "":
# OCR
text = "Please perform OCR on this image and output the recognized Japanese text along with its position (grounding)."
base64_image = pil2base64(image)
messages = [
{"role": "user", "content": [
{"type": "image", "image": f"data:image;base64,{base64_image}"},
{"type": "text", "text": text},
]},
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
raw_output = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
result_image = image_inputs[0].copy()
ocrs = parse_ocr_text(raw_output)
if not ocrs:
return raw_output, "OCR feature was not performed.", result_image
draw = ImageDraw.Draw(result_image)
ocr_texts = []
for ocr_text, quad in ocrs:
ocr_texts.append(f'{ocr_text} ({quad[0]}, {quad[1]}, {quad[4]}, {quad[5]})')
for i in range(4):
start_point = quad[i*2:i*2+2]
end_point = quad[i*2+2:i*2+4] if i < 3 else quad[:2]
draw.line(start_point + end_point, fill="red", width=4)
draw.polygon(quad, outline="red", width=4)
# draw.text((quad[0], quad[1]), ocr_text, fill="red")
ocr_texts_str = "\n".join(ocr_texts)
return "No question was entered.", ocr_texts_str, result_image
with gr.Blocks() as demo:
gr.Markdown("""# MangaLMM Unofficial Demo
![GitHub Repo](https://img.shields.io/badge/repo-manga109%2FMangaLMM-9E95B7?logo=refinedgithub)
We propose MangaVQA and MangaLMM, which are a benchmark and a specialized LMM for multimodal manga understanding.
This demo uses our [MangaLMM model](https://huggingface.co/hal-utokyo/MangaLMM) to perform OCR on an image of manga panels and answer a question about the image.
Please ensure that the image contains fewer than 2116800 pixels. (e.g. 1600x1200, 1920x1080, etc.) If more, we resize it to smaller size.
*Note: This model is for research purposes only and may return incorrect results. Please use it at your own risk.*
""")
with gr.Row():
with gr.Column():
input_button = gr.Button(value="Submit")
input_text = gr.Textbox(
label="Input Text", lines=5, max_lines=5,
placeholder="Please enter a question about your image.\nEmpty text will perform OCR.",
)
input_image = gr.Image(label="Input Image", image_mode="RGB", type="pil")
with gr.Column():
vqa_text = gr.Textbox(label="VQA Result", lines=2, max_lines=2)
ocr_text = gr.Textbox(label="OCR Result", lines=3, max_lines=3)
ocr_image = gr.Image(label="OCR Result", type="pil", show_label=False)
input_button.click(
fn=inference_fn,
inputs=[input_image, input_text],
outputs=[vqa_text, ocr_text, ocr_image],
)
ocr_examples = gr.Examples(
examples=[],
fn=inference_fn,
inputs=[input_image, input_text],
outputs=[vqa_text, ocr_text, ocr_image],
cache_examples=False,
)
demo.queue().launch()