alexxxey123's picture
Update app.py
9dccda9 verified
import gradio as gr
import torch
import torch.nn.functional as F
import re
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
import os
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import urllib.request
# Modeļu inicializācija
model_names = ["distilbert-base-uncased", "prajjwal1/bert-tiny", "roberta-base", "google/mobilebert-uncased", "albert-base-v2", "xlm-roberta-base"]
models = {}
tokenizers = {}
# === Modelis → URL ===
model_urls = {
"best_model_albert-base-v2.pth": "https://www.dropbox.com/scl/fi/adulme5xarg6hgxbs26fm/best_model_albert-base-v2.pth?rlkey=y17x3sw1frk83yfzt8zc00458&st=43uha18d&dl=1",
"best_model_distilbert-base-uncased.pth": "https://www.dropbox.com/scl/fi/8y3oyfbzmbmn427e1ei3d/best_model_distilbert-base-uncased.pth?rlkey=u9rd40tdd3p781r4xtv8wi5t6&st=nfzq7x8j&dl=1",
"best_model_google_mobilebert-uncased.pth": "https://www.dropbox.com/scl/fi/7zdarid2no1fw0b8hk0tf/best_model_google_mobilebert-uncased.pth?rlkey=w13j1jampxlt8himivj090nwv&st=0zq6yofp&dl=1",
"best_model_prajjwal1_bert-tiny.pth": "https://www.dropbox.com/scl/fi/vscwewy4uo58o7xswokxt/best_model_prajjwal1_bert-tiny.pth?rlkey=uav8aas7fxb5nl2w5iacg1qyb&st=12mzggan&dl=1",
"best_model_roberta-base.pth": "https://www.dropbox.com/scl/fi/zqmlzt0q6knjv096yswsr/best_model_roberta-base.pth?rlkey=hi8ddi23dnz45xt3jomxq0pek&st=2axjymyt&dl=1",
"best_model_xlm-roberta-base.pth": "https://www.dropbox.com/scl/fi/2gao9iqesou9kb633vvan/best_model_xlm-roberta-base.pth?rlkey=acyvwt8qtle8wzle5idfo8241&st=8livizox&dl=1",
}
# === Lejupielādē modeļus, ja nav ===
for filename, url in model_urls.items():
if not os.path.exists(filename):
print(f"Lejupielādē: {filename}")
try:
urllib.request.urlretrieve(url, filename)
print(f" → Saglabāts: {filename}")
except Exception as e:
print(f" [!] Kļūda lejupielādējot {filename}: {e}")
for model_name in model_names:
# Tokenizators
tokenizers[model_name] = AutoTokenizer.from_pretrained(model_name, max_length=512)
# Modelis ar 3 klasēm
models[model_name] = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
model_file_name = re.sub(r'/', '_', model_name)
models[model_name].load_state_dict(torch.load(f"best_model_{model_file_name}.pth", map_location=torch.device('cpu')))
# Uz ierīces
models[model_name] = models[model_name].to('cpu')
models[model_name].eval()
# Label mapping
labels = {0: "Safe", 1: "Spam", 2: "Phishing"}
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
def preprocess(text):
text = text.lower() # Teksta pārveide atmetot lielos burtus
text = re.sub(r'http\S+', '', text) # URL atmešana
text = re.sub(r"[^a-z']", ' ', text) # atmet simbolus, kas nav burti
text = re.sub(r'\s+', ' ', text).strip() # atmet liekās atstarpes
text = ' '.join([lemmatizer.lemmatize(word) for word in text.split() if word not in stop_words]) # lemmatizācija
return text
# Classification function (single model)
def classify_email_single_model(text, model_name):
text = preprocess(text)
inputs = tokenizers[model_name](text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = models[model_name](**inputs)
prediction = torch.argmax(outputs.logits, dim=1).item()
probs = F.softmax(outputs.logits, dim=1)
probs_percent = probs.cpu().numpy() * 100
response = {"prediction": labels[prediction], "probabilities": probs_percent}
return response
# Classification function (all models together, probabilities for each model)
def classify_email_detailed(text):
votes = {"Safe": 0, "Spam": 0, "Phishing": 0}
probabilities = {}
for model_name in model_names:
response = classify_email_single_model(text, model_name)
vote = response['prediction']
votes[vote] += 1
probabilities[model_name] = response['probabilities']
response = ""
i = 1
for label, vote_count in votes.items():
vote_or_votes = "vote" if vote_count == 1 else "votes"
if i != 3:
response += f"{label}: {vote_count} {vote_or_votes}, "
else:
response += f"{label}: {vote_count} {vote_or_votes}\n"
i += 1
response += "\n"
for model_name in model_names:
response += f"{model_name}: "
for j, prob in enumerate(probabilities[model_name][0]):
response += f"{labels[j]}: {prob:.2f}% "
response += "\n"
return response
# Classification function (all models together, just the votes)
def classify_email_simple(text):
votes = {"Safe": 0, "Spam": 0, "Phishing": 0}
for model_name in model_names:
response = classify_email_single_model(text, model_name)
vote = response['prediction']
votes[vote] += 1
response = ""
i = 1
for label, vote_count in votes.items():
vote_or_votes = "vote" if vote_count == 1 else "votes"
if i != 3:
response += f"{label}: {vote_count} {vote_or_votes}, "
else:
response += f"{label}: {vote_count} {vote_or_votes}\n"
i += 1
response += "\n"
return response
def classify_email(text, mode):
if mode == "Tikai balsis":
return classify_email_simple(text)
else:
return classify_email_detailed(text)
# Gradio UI
demo = gr.Interface(
fn=classify_email,
inputs=[gr.Textbox(lines=10, placeholder="Ievietojiet savu e-pastu šeit..."),
gr.Radio(choices=["Tikai balsis", "Balsis un varbūtības"], label='Klasifikācijas veids')
],
outputs="text",
title="E-pastu klasifikators (vairāku modeļu balsošana)",
description="Autori: Kristaps Tretjuks un Aleksejs Gorlovičs"
)
demo.launch(share=True)