Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -55,52 +55,73 @@ class calculateDuration:
|
|
| 55 |
else:
|
| 56 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 57 |
|
| 58 |
-
def update_selection(evt: gr.SelectData, width, height
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
# Initialize outputs
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
remove_lora1_visible = True
|
| 70 |
-
elif selected_lora2 is None:
|
| 71 |
-
selected_lora2 = selected_lora
|
| 72 |
-
selected_lora2_info = f"### LoRA 2 Selected: [{selected_lora2['title']}](https://huggingface.co/{selected_lora2['repo']}) ✨"
|
| 73 |
-
lora_scale2_visible = True
|
| 74 |
-
remove_lora2_visible = True
|
| 75 |
else:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# Update placeholder
|
| 79 |
-
placeholder_update = gr.update(placeholder=new_placeholder)
|
| 80 |
-
|
| 81 |
-
# For width and height adjustment
|
| 82 |
-
if "aspect" in selected_lora:
|
| 83 |
-
if selected_lora["aspect"] == "portrait":
|
| 84 |
-
width = 768
|
| 85 |
-
height = 1024
|
| 86 |
-
elif selected_lora["aspect"] == "landscape":
|
| 87 |
-
width = 1024
|
| 88 |
-
height = 768
|
| 89 |
-
else:
|
| 90 |
-
width = 1024
|
| 91 |
-
height = 1024
|
| 92 |
|
| 93 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
def
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
def
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
@spaces.GPU(duration=70)
|
| 106 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
|
@@ -115,6 +136,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
| 115 |
width=width,
|
| 116 |
height=height,
|
| 117 |
generator=generator,
|
|
|
|
| 118 |
output_type="pil",
|
| 119 |
good_vae=good_vae,
|
| 120 |
):
|
|
@@ -134,59 +156,54 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
| 134 |
width=width,
|
| 135 |
height=height,
|
| 136 |
generator=generator,
|
|
|
|
| 137 |
output_type="pil",
|
| 138 |
).images[0]
|
| 139 |
return final_image
|
| 140 |
-
|
| 141 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, selected_lora1, selected_lora2, lora_scale1, lora_scale2, progress=gr.Progress(track_tqdm=True)):
|
| 142 |
-
if selected_lora1 is None and selected_lora2 is None:
|
| 143 |
-
raise gr.Error("You must select at least one LoRA before proceeding.")
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
if selected_lora2 is not None:
|
| 158 |
-
trigger_word2 = selected_lora2.get("trigger_word", "")
|
| 159 |
-
if trigger_word2:
|
| 160 |
-
if selected_lora2.get("trigger_position") == "prepend":
|
| 161 |
-
trigger_words.insert(0, trigger_word2)
|
| 162 |
else:
|
| 163 |
-
|
| 164 |
-
# Combine trigger words with the prompt
|
| 165 |
-
if trigger_words:
|
| 166 |
-
prompt_mash = f"{' '.join(trigger_words)} {prompt}"
|
| 167 |
|
| 168 |
-
|
|
|
|
| 169 |
pipe.unload_lora_weights()
|
| 170 |
pipe_i2i.unload_lora_weights()
|
| 171 |
-
|
| 172 |
# Load LoRA weights with respective scales
|
| 173 |
with calculateDuration("Loading LoRA weights"):
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
if
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
# Set random seed for reproducibility
|
| 186 |
with calculateDuration("Randomizing seed"):
|
| 187 |
if randomize_seed:
|
| 188 |
seed = random.randint(0, MAX_SEED)
|
| 189 |
-
|
|
|
|
| 190 |
if image_input is not None:
|
| 191 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
| 192 |
yield final_image, seed, gr.update(visible=False)
|
|
@@ -196,37 +213,37 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, randomize_se
|
|
| 196 |
final_image = None
|
| 197 |
step_counter = 0
|
| 198 |
for image in image_generator:
|
| 199 |
-
step_counter
|
| 200 |
final_image = image
|
| 201 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 202 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 203 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 204 |
-
|
| 205 |
def get_huggingface_safetensors(link):
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
|
| 231 |
def check_custom_model(link):
|
| 232 |
if(link.startswith("https://")):
|
|
@@ -286,8 +303,8 @@ css = '''
|
|
| 286 |
#title img{width: 100px; margin-right: 0.5em}
|
| 287 |
#gallery .grid-wrap{height: 10vh}
|
| 288 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
| 289 |
-
.
|
| 290 |
-
.
|
| 291 |
.styler{--form-gap-width: 0px !important}
|
| 292 |
#progress{height:30px}
|
| 293 |
#progress .generating{display:none}
|
|
@@ -299,11 +316,10 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 299 |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
|
| 300 |
elem_id="title",
|
| 301 |
)
|
| 302 |
-
|
| 303 |
-
selected_lora2 = gr.State(None)
|
| 304 |
with gr.Row():
|
| 305 |
with gr.Column(scale=3):
|
| 306 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting
|
| 307 |
with gr.Column(scale=1, elem_id="gen_column"):
|
| 308 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 309 |
with gr.Row():
|
|
@@ -320,21 +336,18 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 320 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 321 |
custom_lora_info = gr.HTML(visible=False)
|
| 322 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 323 |
-
# Selected LoRAs section
|
| 324 |
-
gr.Markdown("### Selected LoRAs")
|
| 325 |
-
with gr.Row():
|
| 326 |
-
with gr.Column():
|
| 327 |
-
selected_lora1_info = gr.Markdown("", visible=False)
|
| 328 |
-
lora_scale1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
|
| 329 |
-
remove_lora1_button = gr.Button("Remove LoRA 1", visible=False)
|
| 330 |
-
with gr.Column():
|
| 331 |
-
selected_lora2_info = gr.Markdown("", visible=False)
|
| 332 |
-
lora_scale2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
|
| 333 |
-
remove_lora2_button = gr.Button("Remove LoRA 2", visible=False)
|
| 334 |
with gr.Column():
|
| 335 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
| 336 |
result = gr.Image(label="Generated Image")
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
with gr.Row():
|
| 339 |
with gr.Accordion("Advanced Settings", open=False):
|
| 340 |
with gr.Row():
|
|
@@ -352,35 +365,35 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 352 |
with gr.Row():
|
| 353 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 354 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 355 |
-
|
| 356 |
gallery.select(
|
| 357 |
update_selection,
|
| 358 |
-
inputs=[width, height
|
| 359 |
-
outputs=[prompt,
|
| 360 |
)
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
inputs=[
|
| 364 |
-
outputs=[
|
| 365 |
)
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
inputs=[
|
| 369 |
-
outputs=[
|
| 370 |
)
|
| 371 |
custom_lora.input(
|
| 372 |
add_custom_lora,
|
| 373 |
inputs=[custom_lora],
|
| 374 |
-
outputs=[custom_lora_info, custom_lora_button, gallery,
|
| 375 |
)
|
| 376 |
custom_lora_button.click(
|
| 377 |
remove_custom_lora,
|
| 378 |
-
outputs=[custom_lora_info, custom_lora_button, gallery,
|
| 379 |
)
|
| 380 |
gr.on(
|
| 381 |
triggers=[generate_button.click, prompt.submit],
|
| 382 |
fn=run_lora,
|
| 383 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps,
|
| 384 |
outputs=[result, seed, progress_bar]
|
| 385 |
)
|
| 386 |
|
|
|
|
| 55 |
else:
|
| 56 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 57 |
|
| 58 |
+
def update_selection(evt: gr.SelectData, selected_indices, width, height):
|
| 59 |
+
selected_index = evt.index
|
| 60 |
+
selected_indices = selected_indices or []
|
| 61 |
+
if selected_index in selected_indices:
|
| 62 |
+
# LoRA is already selected, remove it
|
| 63 |
+
selected_indices.remove(selected_index)
|
| 64 |
+
else:
|
| 65 |
+
if len(selected_indices) < 2:
|
| 66 |
+
selected_indices.append(selected_index)
|
| 67 |
+
else:
|
| 68 |
+
raise gr.Error("You can select up to 2 LoRAs only.")
|
| 69 |
|
| 70 |
# Initialize outputs
|
| 71 |
+
selected_info_1 = ""
|
| 72 |
+
selected_info_2 = ""
|
| 73 |
+
if len(selected_indices) >= 1:
|
| 74 |
+
lora1 = loras[selected_indices[0]]
|
| 75 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 76 |
+
if len(selected_indices) >= 2:
|
| 77 |
+
lora2 = loras[selected_indices[1]]
|
| 78 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 79 |
|
| 80 |
+
# Update prompt placeholder based on last selected LoRA
|
| 81 |
+
if selected_indices:
|
| 82 |
+
last_selected_lora = loras[selected_indices[-1]]
|
| 83 |
+
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
+
new_placeholder = "Type a prompt after selecting a LoRA"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
return (
|
| 88 |
+
gr.update(placeholder=new_placeholder),
|
| 89 |
+
selected_info_1,
|
| 90 |
+
selected_info_2,
|
| 91 |
+
selected_indices,
|
| 92 |
+
width,
|
| 93 |
+
height,
|
| 94 |
+
)
|
| 95 |
|
| 96 |
+
def remove_lora_1(selected_indices):
|
| 97 |
+
selected_indices = selected_indices or []
|
| 98 |
+
if len(selected_indices) >= 1:
|
| 99 |
+
selected_indices.pop(0)
|
| 100 |
+
# Update selected_info_1 and selected_info_2
|
| 101 |
+
selected_info_1 = ""
|
| 102 |
+
selected_info_2 = ""
|
| 103 |
+
if len(selected_indices) >= 1:
|
| 104 |
+
lora1 = loras[selected_indices[0]]
|
| 105 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 106 |
+
if len(selected_indices) >= 2:
|
| 107 |
+
lora2 = loras[selected_indices[1]]
|
| 108 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 109 |
+
return selected_info_1, selected_info_2, selected_indices
|
| 110 |
|
| 111 |
+
def remove_lora_2(selected_indices):
|
| 112 |
+
selected_indices = selected_indices or []
|
| 113 |
+
if len(selected_indices) >= 2:
|
| 114 |
+
selected_indices.pop(1)
|
| 115 |
+
# Update selected_info_1 and selected_info_2
|
| 116 |
+
selected_info_1 = ""
|
| 117 |
+
selected_info_2 = ""
|
| 118 |
+
if len(selected_indices) >= 1:
|
| 119 |
+
lora1 = loras[selected_indices[0]]
|
| 120 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
| 121 |
+
if len(selected_indices) >= 2:
|
| 122 |
+
lora2 = loras[selected_indices[1]]
|
| 123 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
| 124 |
+
return selected_info_1, selected_info_2, selected_indices
|
| 125 |
|
| 126 |
@spaces.GPU(duration=70)
|
| 127 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
|
|
|
| 136 |
width=width,
|
| 137 |
height=height,
|
| 138 |
generator=generator,
|
| 139 |
+
joint_attention_kwargs={"scale": 1.0},
|
| 140 |
output_type="pil",
|
| 141 |
good_vae=good_vae,
|
| 142 |
):
|
|
|
|
| 156 |
width=width,
|
| 157 |
height=height,
|
| 158 |
generator=generator,
|
| 159 |
+
joint_attention_kwargs={"scale": 1.0},
|
| 160 |
output_type="pil",
|
| 161 |
).images[0]
|
| 162 |
return final_image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
|
| 165 |
+
if not selected_indices:
|
| 166 |
+
raise gr.Error("You must select at least one LoRA before proceeding.")
|
| 167 |
|
| 168 |
+
selected_loras = [loras[idx] for idx in selected_indices]
|
| 169 |
+
|
| 170 |
+
# Build the prompt with trigger words
|
| 171 |
+
prompt_mash = prompt
|
| 172 |
+
for lora in selected_loras:
|
| 173 |
+
trigger_word = lora.get('trigger_word', '')
|
| 174 |
+
if trigger_word:
|
| 175 |
+
if lora.get("trigger_position") == "prepend":
|
| 176 |
+
prompt_mash = f"{trigger_word} {prompt_mash}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
else:
|
| 178 |
+
prompt_mash = f"{prompt_mash} {trigger_word}"
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
# Unload previous LoRA weights
|
| 181 |
+
with calculateDuration("Unloading LoRA"):
|
| 182 |
pipe.unload_lora_weights()
|
| 183 |
pipe_i2i.unload_lora_weights()
|
| 184 |
+
|
| 185 |
# Load LoRA weights with respective scales
|
| 186 |
with calculateDuration("Loading LoRA weights"):
|
| 187 |
+
for idx, lora in enumerate(selected_loras):
|
| 188 |
+
lora_path = lora['repo']
|
| 189 |
+
scale = lora_scale_1 if idx == 0 else lora_scale_2
|
| 190 |
+
if image_input is not None:
|
| 191 |
+
if "weights" in lora:
|
| 192 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
|
| 193 |
+
else:
|
| 194 |
+
pipe_i2i.load_lora_weights(lora_path, multiplier=scale)
|
| 195 |
+
else:
|
| 196 |
+
if "weights" in lora:
|
| 197 |
+
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
|
| 198 |
+
else:
|
| 199 |
+
pipe.load_lora_weights(lora_path, multiplier=scale)
|
| 200 |
+
|
| 201 |
# Set random seed for reproducibility
|
| 202 |
with calculateDuration("Randomizing seed"):
|
| 203 |
if randomize_seed:
|
| 204 |
seed = random.randint(0, MAX_SEED)
|
| 205 |
+
|
| 206 |
+
# Generate image
|
| 207 |
if image_input is not None:
|
| 208 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
| 209 |
yield final_image, seed, gr.update(visible=False)
|
|
|
|
| 213 |
final_image = None
|
| 214 |
step_counter = 0
|
| 215 |
for image in image_generator:
|
| 216 |
+
step_counter+=1
|
| 217 |
final_image = image
|
| 218 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 219 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 220 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 221 |
+
|
| 222 |
def get_huggingface_safetensors(link):
|
| 223 |
+
split_link = link.split("/")
|
| 224 |
+
if(len(split_link) == 2):
|
| 225 |
+
model_card = ModelCard.load(link)
|
| 226 |
+
base_model = model_card.data.get("base_model")
|
| 227 |
+
print(base_model)
|
| 228 |
+
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
| 229 |
+
raise Exception("Not a FLUX LoRA!")
|
| 230 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 231 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
| 232 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 233 |
+
fs = HfFileSystem()
|
| 234 |
+
try:
|
| 235 |
+
list_of_files = fs.ls(link, detail=False)
|
| 236 |
+
for file in list_of_files:
|
| 237 |
+
if(file.endswith(".safetensors")):
|
| 238 |
+
safetensors_name = file.split("/")[-1]
|
| 239 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
| 240 |
+
image_elements = file.split("/")
|
| 241 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 242 |
+
except Exception as e:
|
| 243 |
+
print(e)
|
| 244 |
+
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 245 |
+
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 246 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
| 247 |
|
| 248 |
def check_custom_model(link):
|
| 249 |
if(link.startswith("https://")):
|
|
|
|
| 303 |
#title img{width: 100px; margin-right: 0.5em}
|
| 304 |
#gallery .grid-wrap{height: 10vh}
|
| 305 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
| 306 |
+
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
| 307 |
+
.card_internal img{margin-right: 1em}
|
| 308 |
.styler{--form-gap-width: 0px !important}
|
| 309 |
#progress{height:30px}
|
| 310 |
#progress .generating{display:none}
|
|
|
|
| 316 |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
|
| 317 |
elem_id="title",
|
| 318 |
)
|
| 319 |
+
selected_indices = gr.State([])
|
|
|
|
| 320 |
with gr.Row():
|
| 321 |
with gr.Column(scale=3):
|
| 322 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
| 323 |
with gr.Column(scale=1, elem_id="gen_column"):
|
| 324 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 325 |
with gr.Row():
|
|
|
|
| 336 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 337 |
custom_lora_info = gr.HTML(visible=False)
|
| 338 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
with gr.Column():
|
| 340 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
| 341 |
result = gr.Image(label="Generated Image")
|
| 342 |
+
with gr.Row():
|
| 343 |
+
with gr.Column():
|
| 344 |
+
selected_info_1 = gr.Markdown("")
|
| 345 |
+
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 346 |
+
remove_button_1 = gr.Button("Remove LoRA 1")
|
| 347 |
+
with gr.Column():
|
| 348 |
+
selected_info_2 = gr.Markdown("")
|
| 349 |
+
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
| 350 |
+
remove_button_2 = gr.Button("Remove LoRA 2")
|
| 351 |
with gr.Row():
|
| 352 |
with gr.Accordion("Advanced Settings", open=False):
|
| 353 |
with gr.Row():
|
|
|
|
| 365 |
with gr.Row():
|
| 366 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 367 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 368 |
+
|
| 369 |
gallery.select(
|
| 370 |
update_selection,
|
| 371 |
+
inputs=[selected_indices, width, height],
|
| 372 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, width, height]
|
| 373 |
)
|
| 374 |
+
remove_button_1.click(
|
| 375 |
+
remove_lora_1,
|
| 376 |
+
inputs=[selected_indices],
|
| 377 |
+
outputs=[selected_info_1, selected_info_2, selected_indices]
|
| 378 |
)
|
| 379 |
+
remove_button_2.click(
|
| 380 |
+
remove_lora_2,
|
| 381 |
+
inputs=[selected_indices],
|
| 382 |
+
outputs=[selected_info_1, selected_info_2, selected_indices]
|
| 383 |
)
|
| 384 |
custom_lora.input(
|
| 385 |
add_custom_lora,
|
| 386 |
inputs=[custom_lora],
|
| 387 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_indices, prompt]
|
| 388 |
)
|
| 389 |
custom_lora_button.click(
|
| 390 |
remove_custom_lora,
|
| 391 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_indices, custom_lora]
|
| 392 |
)
|
| 393 |
gr.on(
|
| 394 |
triggers=[generate_button.click, prompt.submit],
|
| 395 |
fn=run_lora,
|
| 396 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height],
|
| 397 |
outputs=[result, seed, progress_bar]
|
| 398 |
)
|
| 399 |
|